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Abstract. Given a non-positively curved 2-complex with a circle-valued
Morse function satisfying some extra combinatorial conditions, we de-
scribe how to locally isometrically embed this in a larger non-positively
curved 2-complex with free-by-cyclic fundamental group.

This embedding procedure is used to produce examples of CAT(0)
free-by-cyclic groups that contain closed hyperbolic surface subgroups
with polynomial distortion of arbitrary degree. We also produce ex-
amples of CAT(0) hyperbolic free-by-cyclic groups that contain closed
hyperbolic surface subgroups that are exponentially distorted.
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Introduction

We introduce a technique for constructing non-positively curved 2-comple-
xes with free-by-cyclic fundamental groups. As an application, we have a
series of existence results concerning closed hyperbolic surface subgroups in
free-by-cyclic groups.

It is an open question as to whether every hyperbolic free-by-cyclic group
contains a closed hyperbolic surface subgroup. Theorem 1 below can be
viewed as a positive answer to the much more basic question: do there
exist hyperbolic free-by-cyclic groups that contain closed hyperbolic surface
subgroups?

Theorem 1 (Quasi-convex surface subgroups). There exist hyperbolic free-
by-cyclic groups containing quasi-convex closed hyperbolic surface subgroups.

The following two theorems show that the distortion of closed hyperbolic
surface subgroups in CAT(0) free-by-cyclic groups can be as varied as the
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distortion of free subgroups. We produce examples where the distortion is
polynomial of arbitrary degree, or exponential. In fact, the proofs given
here rely on the fact that there are CAT(0) free-by-cyclic groups whose free
kernels have the appropriate distortion function.

Theorem 2 (Polynomially distorted surface subgroups). For each integer
n ≥ 2, there exists a CAT(0) free-by-cyclic group containing the fundamental
group of a closed hyperbolic surface that has polynomial distortion of degree
n.

In the exponential distortion case, we show that with quite a bit of extra
care, one can require that the ambient free-by-cyclic group be hyperbolic.

Theorem 3 (Exponentially distorted surface subgroups). There exist hyper-
bolic free-by-cyclic groups that contain exponentially distorted closed surface
subgroups.

The basic examples of hyperbolic groups that contain exponentially dis-
torted, closed, hyperbolic surface subgroups are the fundamental groups of
closed, hyperbolic 3-manifolds that fiber over the circle. Theorem 3 shows
that one can find hyperbolic groups of cohomological dimension 2 contain-
ing exponentially distorted closed surface subgroups, and that, in particular,
one can make the ambient hyperbolic group be free-by-cyclic.

In all three theorems, the groups in question are fundamental groups of
non-positively curved squared 2-complexes.

The paper is organized as follows. In Theorem 1.8 of Section 1 we estab-
lish a criterion for when a non-positively curved 2-complex can be locally
isometrically embedded in a larger non-positively curved 2-complex with
free-by-cyclic fundamental group. The local isometric embedding ensures
that the fundamental group of the original 2-complex embeds into the free-
by-cyclic group. This is the basic way that we shall produce closed surface
groups inside free-by-cyclic groups, but the technical difficulties in each sec-
tion increase as we require more conditions either on the distortion of the
surface group, or on the curvature of the ambient free-by-cyclic group, or
both.

In Section 2 we apply this technique to a squared structure on a genus
2 surface to obtain a linearly distorted, or quasi-convex, subgroup of a hy-
perbolic free-by-cyclic group. The hyperbolicity is ensured by a careful
application of the techniques used to prove Theorem 1.8 in Section 1. In
Section 3 we take a CAT(0) amalgamation of (i) a free-by-cyclic group with
polynomially distorted free subgroup and (ii) a closed surface group, amal-
gamating along the free subgroup. This produces a closed surface group
with polynomial distortion inside a 2-dimensional CAT(0) group. We then
embed this into a CAT(0) free-by-cyclic group by the methods of Theo-
rem 1.8. In Section 4 we proceed as in Section 3, but this time starting with
the amalgam of a surface group and a hyperbolic free-by-cyclic group, and
proceed carefully as in Section 2 in order to end with an ambient hyperbolic
free-by-cyclic group. Finally, in Section 5 we pose questions that are related
to these ideas and constructions.

Noel Brady thanks Martin Bridson and Jens Harlander for conversations
about CAT(0) LOT groups and free-by-cyclic constructions.
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1. Morse functions on 2-complexes

In this section we recall a Morse theory way of recognizing that a 2-
complex is aspherical and has free-by-cyclic fundamental group. We then
describe a combinatorial condition on non-positively curved 2-complexes
(the existence of f -link filling graphs) that ensures that they locally iso-
metrically embed into non-positively curved 2-complexes with free-by-cyclic
fundamental groups. The material in this section is key to understanding
the constructions in the subsequent sections of the paper.

The first two definitions below are from [1].

Definition 1.1 (Affine cell complexes). A finite-dimensional cell-complex
X is said to be an affine cell-complex if it is equipped with the following
structure. An integer m ≥ dim(X) is given, and for each cell e of X we
are given a convex polyhedral cell Ce ⊂ Rm and a characteristic function
χe : Ce → e such that the restriction of χe to any face of Ce is a char-
acteristic function of another cell, possibly precomposed by a partial affine
homeomorphism (=restriction of an affine homeomorphism) of Rm.

Definition 1.2 (Morse function). A map f : X → R defined on an affine
cell complex X is a Morse function if

• for every cell e of X, fχe : Ce → R extends to an affine map Rm → R,
and fχe is constant only when dim e = 0, and

• the image of the 0-skeleton is discrete in R.

Definition 1.3 (Circle-valued Morse function). A circle-valued Morse func-
tion on an affine cell complex X is a cellular map f : X → S1, with the
property that f lifts to a Morse function between universal covers.

By composing with a covering map S1 → S1 if necessary, we will assume
that all circle-valued Morse functions map to a circle with a single vertex.

Definition 1.4 (Ascending and descending links). Suppose X is an affine
complex and f : X → S1 is a circle-valued Morse function. Choose an
orientation of S1, which lifts to one of R, and lift f to a map of universal

covers f̃ : X̃ → R. Let v ∈ X(0), and note that the link of v in X is

naturally isomorphic to the link of any lift ṽ of v in X̃ . We say that a

cell ẽ ⊂ X̃ contributes to the ascending (respectively descending) link of ṽ

if ṽ ∈ ẽ and if f̃ |ẽ achieves its minimum (respectively maximum) value at
ṽ. The ascending (respectively descending) link of v is then defined to be
the subset of Lk(v,X) naturally identified with the ascending (respectively
descending) link of ṽ. Note that in the case X is a 2-complex, all the
ascending, descending and entire links will be graphs.

Henceforth, all cell complexes will be 2-complexes. The next proposition
gives a local way of telling that a 2-complex is aspherical and has free-by-
cyclic fundamental group.

Proposition 1.5 (Free-by-cyclic). If f : X → S1 is a circle-valued Morse
function on the 2-complex X all of whose ascending and descending links
are trees, then X is aspherical, and π1(X) is free-by-cyclic.



4 J. BARNARD AND N. BRADY

Remark 1.6. This is basically a result of J. Howie [5]. In [5] it is proved
that if all the ascending links (or all the descending links) of a given LOT 2-
complex are trees, then the 2-complex is aspherical. Also, if both ascending
and descending links are trees, then the LOT 2-complex has free-by-cyclic
fundamental group.

The current proposition says that if all of both the ascending and the
descending links of a general affine 2-complex are trees, then the 2-complex
is aspherical and has free-by-cyclic fundamental group.

Note that if just the ascending links are trees and the descending links are
not, then the aspherical 2-complex need not have free-by-cyclic fundamental
group. As a simple example, take the group with five generators t and ai

(i = 0, . . . , 3) and four conjugation relations aiai+1a
−1
i = t (i mod 4). In

any map to Z, all five generators must have the same image, so we can
assume this common image is a generator of Z. The corresponding circle-
valued Morse function takes the ai and the t loops once around a target
circle. Its ascending link is a tree, but the descending link is the disjoint
union of a single vertex and a circle. The kernel of the map to Z is not
finitely generated.

Proof of Proposition 1.5. Look at generic f point preimages in X. Since X
has an affine structure and f : X → S1 is affine, the point preimages are
affine graphs in X. We may then view X as the total space of a graph of
spaces: the underlying space is the target circle, the edge space is the generic
point preimage graph, and the vertex space is the S1-vertex preimage. The
maps from an edge space to the adjacent vertex spaces collapse either the
ascending or the descending subgraphs of the corresponding link. These are
trees by hypothesis, so these maps are homotopy equivalences. It follows
that X is homotopy equivalent to a graph bundle over S1, and therefore is
aspherical and has free-by-cyclic fundamental group. �

The next definition is a little technical, so we preface it with a discussion
of the intuition behind it. We are given a circle-valued Morse function on
a locally CAT(0) 2-complex X, with the property that all ascending and
descending links are forests. We would like to be able to attach 1-cells and
2-cells to X to obtain a bigger locally CAT(0) 2-complex in which X locally
isometrically embeds. Furthermore, we want to extend the Morse function
over the resulting 2-complex, so that all ascending and descending links
are now trees. The description of the new 2-complex will be as a graph of
spaces, whose underlying graph is a circle with one vertex, and one 1-cell.
The vertex space is the original 2–complex X, and the edge space is a graph
Γ. That is, the new 2–complex is obtained from X by attaching a “handle”
of the form Γ × [0, 1]. Condition (1) in Definition 1.7 is there to ensure
that the geometry works out, namely, that the new 2-complex is locally
CAT(0), and that the inclusion map of X is a local isometric embedding.
Condition (2) in Definition 1.7 is there to ensure that all the ascending and
descending forests get connected up precisely into trees. This intuition will
be made precise in the proof of Theorem 1.8.

Definition 1.7 (f -link filling graphs). Suppose f : X → S1 is a circle-
valued Morse function on a locally CAT(0) 2-complex X. An f -link filling
graph is a (not necessarily connected) graph Γ satisfying the following:
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(1) there are two combinatorial immersions ϕ1, ϕ2 : Γ → X(1) that are
local isometric embeddings,

(2) the maps (f ◦ ϕi)∗ : π1(Γ) → π1(S
1) agree, and

(a) for every vertex v ∈ X the induced map on the direct sum of
reduced homology groups

⊕

w∈Γ(0)

ϕ1(w)=v

H̃0(LK↑(w,Γ); Z) → H̃0(Lk↑(v,X); Z)

is an isomorphism, and
(b) for every vertex v ∈ X the induced map on the direct sum of

reduced homology groups
⊕

w∈Γ(0)

ϕ2(w)=v

H̃0(LK↓(w,Γ); Z) → H̃0(Lk↓(v,X); Z)

is an isomorphism.

Note that in part 2(a) the ascending links of Γ are with respect to the Morse
function f ◦ ϕ1, and in part 2(b) the descending links are with respect to
the Morse function f ◦ ϕ2. We often refer explicitly to the immersions and
write that ϕ1, ϕ2 : Γ → X is f -link filling.

As indicated before the definition, the main application we have in mind
for an f -link filling graph Γ is when the Morse function f : X → S1 has
forests as its ascending and descending links. Then the new 2-complex
obtained from X by attaching Γ × [0, 1] via the map ϕ1 at the Γ × 0 end,
and the map ϕ2 at the Γ × 1 end, will admit a circle-valued Morse function
with trees as ascending and descending links. Here are the details.

Theorem 1.8 (Free-by-cyclic completions). Let X be a CAT(0) 2-complex
X with a circle-valued Morse function f : X → S1 whose ascending and
descending links are all forests. If ϕ1, ϕ2 : Γ → X is an f -link filling graph,
then the 2-complex, C(X), obtained from X by adjoining Γ × [0, 1] via ϕ1

on Γ × 0, and ϕ2 on Γ × 1 satisfies:

(1) the complex C(X) is locally CAT(0) and the inclusion X → C(X)
is a local isometric embedding,

(2) the Morse function f : X → S1 extends to a Morse function f̂ :
C(X) → S1 all of whose ascending and descending links are trees.

In particular, π1(X) is a subgroup of π1(C(X)), and π1(C(X)) is a CAT(0),
free-by-cyclic group.

Proof of Theorem 1.8. The 2-complex C(X) is obtained from the non-
positively curved 2-complex X by attaching Γ× [0, 1] via the local isometric
embeddings ϕi. Here Γ× [0, 1] is given the product metric, and the complex
C(X) gets the induced length metric. Note that we have just attached 1-
cells (in the form of {w}× [0, 1] where w is a vertex of Γ) and 2-cells (in the
form of e × [0, 1] where e is an edge of Γ) to X. Thus, C(X) and X have
the same vertex set.
Proof of part (1). We show that C(X) is non-positively curved, and that
the inclusion X ⊂ C(X) is a local isometric embedding. This follows from
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the standard theory [4], but we give a proof here, as the local picture that
is developed below is used in the proof of part (2).

For non-positive curvature, we must verify that Lk(v, C(X)) is ‘large’ for
every vertex v ∈ C(X); i.e., we check that all cycles in Lk(v, C(X)) have
length at least 2π. From the previous paragraph, we know that v ∈ X, and
the non-positive curvature of X ensures that Lk(v,X) is large. Thus we
have to describe the effect on Lk(v,X) of attaching Γ × [0, 1] via the maps
ϕi. Let us consider the ϕ1 attaching map; the analysis of ϕ2 is completely
analogous. If w ∈ Γ(0) then Lk((w, 0),Γ × [0, 1]) is simply an orthogonal
cone on Lk(w,Γ). The cone point corresponds to the edge w × [0, 1] at
(w, 0), and the adjective “orthogonal” just means that the lengths of the
edges are all π/2. This latter fact holds since we’ve taken the product
metric on Γ × [0, 1]. Since ϕ1 is a local isometric embedding we know that
the ϕ1-induced image of Lk(w,Γ) in Lk(v,X), denoted by (ϕ1)∗(Lk(w,Γ)),
is convex. Specifically, (ϕ1)∗(Lk(w,Γ)) is a discrete set of points (in 1-1
correspondence with Lk(w,Γ)) that is π-separated.

Thus, the local effect of attaching a neighborhood of (w, 0) in Γ × [0, 1]
via ϕ1 is to attach an orthogonal cone on Lk(w,Γ) to Lk(v,X) by identifing
Lk(w,Γ) with the π-separated subset (ϕ1)∗(Lk(w,Γ)) of Lk(v,X). This
new graph is still large, and Lk(v,X) is a convex subgraph (in the CAT(1)
sense). We continue to attach orthogonal cones, one for every w ∈ Γ with
ϕ1(w) = v and one for every w ∈ Γ with ϕ2(w) = v. Thus the final result,
Lk(v, C(X)), is large, and Lk(v,X) is a convex subgraph. This shows that
C(X) is non-positively curved, and that X ⊂ C(X) is a local isometric
embedding. Note that we have needed only the hypothesis that the ϕi are
local isometric embeddings for this part.
Proof of part (2). The requirement that (f ◦ ϕ1)∗ = (f ◦ ϕ2)∗ ensures that

the Morse function f : X → S1 extends to a Morse function f̂ : C(X) → S1.
We can explicitly construct this extension as follows. For any edge e ⊂ Γ,

we let N1(e) denote the (signed) number of times that (f ◦ ϕ1)(e) winds
around S1, and similarly define N2(e). Choose a vertex w0 ∈ Γ and an
integer t0 so that

t0 >
∑

e⊂Γ

|N2(e) − N1(e)|.

We map both end points of the new 1-cell {w0} × [0, 1] to the vertex of the
circle and send the [0, 1] interval around the circle t0 times in the positive
direction. Now suppose w1 is a vertex of Γ adjacent to w0 via the edge e1.
We map the new 1-cell {w1} × [0, 1] around the circle monotonically t1 =
t0+(N2(e1)−N1(e)) times. Note that t1 is always positive by choice of t0, and
so this 1-cell gets mapped positively around the target circle. Continuing
in this fashion, suppose we have some sequence of edges e1, . . . , en with ei

joining wi−1 to wi and with wn = w0. We need to check that t0 = tn. Set
γ ∈ π1(Γ) to be that element represented by the concatenation of the edges
e1, . . . , en, and note that

tn − t0 =
n∑

i=1

N2(ei) − N1(ei) =
n∑

i=1

N2(ei) −
n∑

i=1

N1(ei)

= (f ◦ ϕ2)∗(γ) − (f ◦ ϕ1)∗(γ) = 0.
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It follows that we may extend consistently across the edges of C(X). Note
also that this construction implies that the boundaries of the 2-cells {e} ×
[0, 1] are mapped null-homotopically into S1, so that we may extend “lin-

early” across these new 2-cells, completing the extension of f to f̂ .
We have to argue that the new ascending and descending links are trees.

We give the argument for ↑-links. The argument for ↓-links is analogous:
just interchange the roles of ϕ1 and ϕ2 in the argument below, and use
hypothesis 2(b) in place of hypothesis 2(a).

Let v ∈ C(0)(X). Since f̂ is an extension of f , we have that Lk↑(v,X) ⊂
Lk↑(v, C(X)). Here the first ↑-link is with respect to f , and the second

↑-link is with respect to f̂ . By the definition of the extension, any lift of f̂
to the universal covers will attain a maximum on an edge {w}× [0, 1] at the
(w, 1) endpoint, and will attain a minimum at the (w, 0) endpoint. Thus
there are no contributions to Lk↑(v, C(X)) by the (ϕ2)∗-attached orthogonal
cones. Let w ∈ Γ be such that ϕ1(w) = v. In the proof of part (1) we saw
that this contributed an orthogonal cone on (ϕ1)∗(Lk(w,Γ)) to Lk(v, C(X)).
Of this, the contribution to Lk↑(v, C(X)) is simply the cone on the subset
(ϕ1)∗(Lk↑(w,Γ)). Here we think of ϕ1 as defining a Morse function on Γ by
composition with f .

To complete the proof, we claim that by coning off each of the sets
(ϕ1)∗(Lk↑(w,Γ)) as w ranges over all those vertices of Γ that are in ϕ−1

1 (v),
the components of the forest Lk↑(v,X) are connected to produce a tree.
For this we attach one C(Lk↑(w,Γ)) at a time to Lk↑(v,X) and apply the
following lemma. The precise argument is continued after the lemma.

Lemma 1.9. If f : P → Q is a map of spaces so that f∗ : H̃0(P ) → H̃0(Q)

is injective, and H̃1(Q) = 0, then

(1) H̃1(C(P ) ∪f Q) = 0, and

(2) H̃0(C(P ) ∪f Q) = H̃0(Q)/f∗(H̃0(P ))

where C(P ) denotes the cone on P .

Proof of Lemma 1.9. This is just reduced Mayer-Vietoris. We have

→ H̃1(C(P )) ⊕ H̃1(Q) → H̃1(C(P ) ∪f Q) → H̃0(C(P ) ∩ Q) →

H̃0(C(P )) ⊕ H̃0(Q) → H̃0(C(P ) ∪f Q) → 0

Since C(P ) is contractible, all its reduced homologies vanish. By hypothesis,
the reduced 1st homology of Q is trivial. Thus the first term on the left is
trivial. The H̃0(C(P ) ∩ Q) term is just a copy of H̃0(P ) and so injects (via

f∗) into H̃0(Q) by hypothesis. Since this map injects, its kernel is trivial,

and so we conclude that H̃1(C(P ) ∪f Q) is trivial. This proves (1).
The sequence now becomes

0 → H̃0(P ) → H̃0(Q) → H̃0(C(P ) ∪f Q) → 0

which gives us part (2). �

Let {w1, . . . , wn} be the set of vertices of Γ that are mapped to v by
ϕ1. Start with P = Lk↑(w1,Γ) and Q = Lk↑(v,X). Use Lemma 1.9 to
determine the effect of attaching a cone on Lk↑(w1,Γ) to Q = Lk↑(v,X).
Continue to attach cones on the Lk(wi,Γ), using Lemma 1.9 at each stage
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to determine that the resulting graphs all have trivial first homology, and
that their reduced 0-homology groups are quotients of H̃0(Lk↑(v,X)) by

sums ⊕1≤j≤if∗(H̃0(Lk↑(wj,Γ))). The isomorphism hypothesis 2(a) in the
definition of f -link filling ensures that we can continue applying Lemma 1.9
until the last cone has been attached, at which point the reduced 0-homology
group will be trivial. This concludes the proof of Theorem 1.8. �

2. Quasi-convex surface subgroups

Proof of Theorem 1. We start by taking the 2-complex X of Theorem 1.8
to be a closed hyperbolic surface. For example we can take X to be the
surface of genus 2 obtained from the top 3 squares of Figure 1 by performing
the indicated edge-pair identifications. The circle-valued Morse function is
defined to take each oriented edge once around the target circle, and is
extended linearly over the 2-cells of the surface X.
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Figure 1. Hyperbolic free-by-Z group with linearly dis-
torted genus 2 surface subgroup.

We now perform the completion outlined in Theorem 1.8 so that the
universal cover of the resulting complex C(X) does not contain any isomet-
rically embedded flat planes. This will ensure that the resulting group is
hyperbolic.

This is done by taking the graph Γ of Theorem 1.8 to be the disjoint union
of two copies of the wedge of two circles. The maps ϕi of Theorem 1.8 are
defined as follows: ϕ1 maps the first bouquet of two circles to the bouquet
in X(1) labeled by the ordered pair (x, y), and the second bouquet to the
bouquet in X(1) labeled by (a, b), while the map ϕ2 takes the first bouquet

to the bouquet in X (1) labeled by (z, x) and takes the second bouquet to

the bouquet in X (1) labeled by (b, z). This can be easily read off from the
bottom 4 squares in Figure 1; identifying the vertical s and t edges gives the
complex Γ× [0, 1], and the labels on the top and bottom bouquets define the
maps ϕi. One can either check that the graph Γ and the two immersions
ϕi satisfy the f -link connectivity condition of Theorem 1.8, or simply check
directly that the ascending and descending links in the final 2-complex are
both trees.
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Now suppose the universal cover of C(X) contains an isometrically em-
bedded flat plane P . If w ∈ σ ⊂ P is a vertex in a 2-cell of P we have the
following inclusion of links

Lk(w, σ) ⊂ Lk(w,P ) ⊂ Lk(w, C̃(X)) .

This means that P must be tiled by 2-cells σ with the property that for
each vertex w ∈ σ the segment Lk(w, σ) lies in an embedded circuit of

length 4 in Lk(w, C̃(X)). This means that σ is a lift of a 2-cell of C(X)
with the same property; each corner of the 2-cell is contained in an embedded
circuit of length 4 in Lk(v, C(X)). Here v is the vertex of C(X). Note that
Lk(v, C(X)) is just obtained from Lk(v,X), which is a circle of length 12,
by attaching 4 cones with cone vertices {s±, t±}, and so it is not hard to
analyze. It is shown in Figure 2.
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Figure 2. Link of the sole vertex v ∈ C(X).

We can determine which 2-cells of C(X) do not have the property above
by determining which edges of Lk(v, C(X)) are not contained in embedded
circuits of length 4. The only such edges are the edge from y+ to c− and
the edge from z− to c−. Thus the plane P cannot contain any lifts of either
the bxc−1y−1 2–cell or of the cza−1z−1 2-cell.

Now consider edge labels of the remaining five 2-cells:

ayb−1x−1, sxs−1z−1, sys−1x−1, tbt−1z−1, tat−1b−1 .

Note that the edge labels a, y, and z each occur exactly twice among these
five 2-cells. In particular, if the plane P contains a lift of the y-edge, then it
must contain lifts of the ayb−1x−1 and the sys−1z−1 2-cells. This means that
it contains a lift of the a-edge, and therefore must also contain a lift of the
tat−1b−1 2-cell. We conclude that if the plane contains a lift of one of these
three 2-cells it has to contain lifts of all three. Consider the vertex w at the
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terminal endpoint of the y-edge. The only circuit of combinatorial length 4
in Lk(v, C(X)) that contains y+ is y+s+x−b+. But the x−b+ edge implies
that P must contain a lift of the illegal 2-cell bxc−1y−1, a contradiction.
Thus, we have increased the list of illegal 2-cells types from two to five.

Finally, if P contains a lift of one of the last two 2-cells, sxs−1z−1 and
tbt−1z−1, then it contains the other (since they share a z-edge), and so P
contains a lift of an x-edge. Therefore, P must contain a lift of one of the five
illegal 2–cells. This final contradiction implies that no such plane P exists
in the universal cover of C(X), and hence that π1(C(X)) is hyperbolic. �

The graph Γ and the maps ϕi were found by inspection, by analyzing the
components of the ascending and descending links of the Morse function on
the genus 2 surface, and seeing how they were arranged in the link of the
surface. The bouquets and maps were chosen specifically in order to connect
up components of the ascending and descending links, while being careful to
preserve non-positive curvature and hyperbolicity. One could have chosen
different hyperbolic completions C(X) of the same squared surface X, or one
could start with a different squared structure on a closed hyperbolic surface
of possibly different genus, and find suitable f -filling graphs Γ. There are
many possibilities.

3. Polynomially distorted surface subgroups

In this section we prove Theorem 2. Here is an outline of the construction.

(1) We begin with a CAT(0) squared complex with free-by-cyclic fun-
damental group, where the free kernel has polynomial distortion of
degree n, say. In [3] there are examples of such groups where n is
arbitrary.

(2) Let K be the double cover of this complex, corresponding to the
kernel of a map to Z2. We glue K to a suitable surface group to
form X, and we define a Morse function on X so that the ascending
and descending links are forests.

(3) We then find an f -link filling graph and apply Theorem 1.8 above.
It will follow from the construction that the distortion of the surface
group in π1(C(X)) will be polynomial of degree n.

The explicit examples of [3] with which we begin are encoded by labeled
oriented graphs (LOGs), so we begin by recalling the definition of LOG
presentations.

Definition 3.1 (LOGs and LOTs). A labeled, oriented graph, or LOG,
consists of a finite, directed graph with distinct labels on all the vertices, and
oriented edge labels taken from the set of vertex labels. An LOG defines a
finite presentation as follows. The set of generators is in 1–1 correspondence
with the set of vertex labes, and the set of relators is in 1–1 correspondence
with the set of edges, so that an edge labeled a orieted from vertex u to
vertex v corresponds to a conjugation relation ava−1 = u. In case the graph
is a tree we call it a labeled, oriented tree or LOT and call the corresponding
finite presentation an LOT presentation.
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Note that the presentation 2-complex of an LOG group is a squared
complex. In the examples that follow, the squared complexes will be non-
positively curved.

Proof of Theorem 2.

(1): The free-by-cyclic group, and the complex K.
We begin with CAT(0) groups of the form Fn o Z where the Fn subgroup

has polynomial distortion of degree n. We describe specific examples as
follows (from [3]). Let ϕ : Fn → Fn be the automorphism that is defined on
the free basis {a1, . . . , an} as follows:

ϕ(aj) = ajaj−1 (j odd), ϕ(aj) = aj−1aj (j even)

where a0 denotes the identity element 1.
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Figure 3. LOG presentation of Fn oϕ Z, and link of vertex
in associated squared 2-complex.

Now consider the group FnoϕZ where Z = 〈τ〉. Define αi by the following

αiai = τ (for i odd), and αi = aiτ (for i even).

Then Fn oϕ Z is isomorphic to the group with the LOG presentation shown
in Figure 3. The graph has n + 1 vertices labeled τ and αi for 1 ≤ i ≤ n.
The vertex αn is isolated, there is a loop labeled α1 at τ , and directed
edges αi from αi−1 to τ for 2 ≤ i ≤ n. Figure 3 also shows the link of the
single vertex in the presentation 2-complex. This link is large, and so the 2-
complex is non-positively curved. We define a circle-valued Morse function
on this complex by sending each generator around the circle once in the
positive direction and extending linearly over the 2-cells. This labels the
vertices with + or − as shown in Figure 3.

In [3] it is shown that the distortion of the free group Fn in Fn oϕ Z

is polynomial of degree n. Define K to be the double cover of this square
complex corresponding to the kernel of the homomorphism Fn oϕ Z → Z2.
Thus K is a non-positively curved squared complex with fundamental group
Fn oϕ2 Z, and the Fn subgroup also has polynomial distortion of degree n
in π1(K). Note that K has two vertices, v1 and v2 say, and the graph, Θ,
consisting of directed edges τ, α1, . . . , αn from v1 to v2 will correspond to
the Fn subgroup. We let τ̂ , α̂1, . . . , α̂n denote the corresponding edges of K
directed from v2 to v1.
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(2): The hyperbolic surface Σ, and the complex X = Σ ∪Θ K.
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Figure 4. The non-positively curved, squared surface Σn.

Note that the 2(n + 1) squares in Figure 4 glue together to form a non-
positively curved squared structure on a closed hyperbolic surface Σn. All
the topmost 2(n + 1) vertices are identified to one vertex, called v1, and all
the bottommost 2(n+1) vertices are identified to a second vertex, called v2.
The αi edges and the τ edge form a copy of the graph Θ in the surface Σn.
The squared complex X is formed by gluing the surface to the complex K
by identifying the two copies of the graph Θ.
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Figure 5. Ascending and descending links of v1 in X.

It is easy to check that X is non-positively curved, and that the complex K
locally isometrically embeds into X. The key point to note in checking this
is that the links Lk(vi,Σn) are both circles of combinatorial length 4n + 4.
Moreover if p, q are distinct vertices in Lk(vi,K) that are also in Lk(vi,Σn),
then their combinatorial distance in Lk(vi,Σn) is at least 4 (actually is
a positive integral multiple of 4). Thus when we identify corresponding
vertices in Lk(vi,Σn) and Lk(vi,K) to get Lk(vi, X), the resulting links are
still large, and so X is non-positively curved. Moreover, Lk(vi,K) will be
convex subcomplexes, in the CAT(1) sense, of Lk(vi, X) and so K → X is
a local isometric embedding.
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Note that the surface does not locally isometrically embed in X, but
that π1(X) is the free product with amalgamation of the surface group with
π1(K), amalgamated along the Fn = π1(Θ) subgroup. Therefore, the surface
group will have polynomial distortion of degree n in π1(X).

The circle-valued Morse function on K is extended to all of X by mapping
the directed edges of the squares in Figure 4 once around the target circle
positively, and extending linearly over the 2-cells.
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Figure 6. Ascending and descending links of v2 in X.

Figures 5 and 6 show the ascending (−) and descending (+) links of the
two vertices of X. We see that Lk−(v1, X) and Lk+(v2, X) are both trees,
but that the remaining two links are forests with (n + 2) components each.
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Figure 7. The graph Γ in the application of Theorem 1.8.

(3): The completion of X to C(X).
We now choose an f -link filling graph Γ and attach Γ× [0, 1] as in Theo-

rem 1.8 to obtain the complex C(X) with CAT(0) free-by-cyclic fundamen-
tal group into which X locally isometrically embeds. Thus π1(X) will be
undistorted in π1(C(X)), and so the surface subgroup of π1(X) will still
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have polynomial distortion of degree n in the CAT(0) free-by-cyclic group
π1(C(X)).

We claim that the graph Γ shown in Figure 7 works for any choice of i,
j, k and m with i 6= k, j + 1. We define a map ϕ : Γ → X (1) according to
the labels and orientations on the edges in Figure 7, and set ϕ1 = ϕ2 = ϕ in
constructing C(X). It is easy to check that ϕ is a local isometric embedding.
We now show that the resulting ascending and descending links are trees.

We let t1, . . . , t4 denote the edges of Γ × [0, 1] reading from left to right
in Figure 7. Each ascending and descending link in Figures 5 and 6 receives
two new vertices, labeled and attached as follows:

To Lk↑(v1, X) we add a new vertex t−1 , joined by an edge to x−
i−1, and a

new vertex t−2 , joined to x−
j . To Lk↓(v1, X) we add a new vertex t+1 , joined

to x+
j , and a new vertex t+2 , joined to x+

i−1, α̂+
m, and all the β+ except β+

i .

To Lk↑(v2, X) we add a new vertex t−4 , joined to y−k , and a new vertex

t−3 , joined to y−i , α̂−
m, and all the β− except β−

i . To Lk↓(v2, X) we add a

new vertex t+3 , joined to y+
k , and a new vertex t+4 , joined to y+

i .
It is easy to check that the new ascending and descending links are all

trees.
�

4. Exponentially distorted surface subgroups

In this section we prove Theorem 3. We do this by constructing a non-
positively curved squared complex with hyperbolic, free-by-cyclic fundamen-
tal group, that contains an exponentially distorted closed surface group. The
outline of the construction is similar to that of the previous section.

(1) We begin with a non-positively curved squared complex with hyper-
bolic F7 o Z fundamental group. Note that the fiber F7 is exponen-
tially distorted in F7 o Z.

(2) As in the previous example, we next glue a double cover K of this
complex to a suitably chosen closed surface to obtain X. Note that
the surface group injects into π1(X) by the standard theory of free
products with amalgamation. Moreover, we choose the gluing, es-
sentially identifying the F7 fiber with a highly convex F7 in the
surface group, so that the distortion of the surface group in π1(X)
is exponential.

(3) Finally, we apply Theorem 1.8 to obtain a non-positively curved 2-
complex C(X) so that X → C(X) is a local isometric embedding.
As in the proof of Theorem 1, the completion is done with care to
ensure that π1(C(X)) is hyperbolic. In our construction π1(C(X))
is isomorphic to F65 o Z.

Here are the details.

Proof of Theorem 3.

(1): The free-by-cyclic group, and the complex K.
We start with the LOT group corresponding to the labeled oriented tree

on the left hand side of Figure 8. The link of the vertex in the corresponding
presentation 2-complex is shown on the right side of Figure 8. From this we
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Figure 8. LOT presentation and link of vertex in presenta-
tion 2-complex.

see that the LOT group is CAT(0). As in the proof of Theorem 1, if P is
an isometrically embedded flat plane in the universal cover of the presenta-
tion 2-complex, and if w ∈ σ ⊂ P is a vertex of a square σ in P , then the
segment Lk(w, σ) is contained in the embedded length 4 circuit, Lk(w,P ),
inside the link of w in the universal cover. Again, links in the universal cover
are isomorphic to the link of the single vertex v in the LOT complex. The
only circuits of length 4 in this link contain a−

0 and a+
0 as opposite vertices.

Thus each 2-cell in P contains at least two adjacent corners of the form
Xa±0 , where X ∈ {a−1 , a−2 .a−3 , a−4 , a+

5 , a−6 , a−7 }, and thus two corners of the

form XY , where X ∈ {a+
1 , a+

2 , a+
3 , a+

4 , a−5 , a+
6 , a+

7 }. Such corners correspond
to segments not contained in any embedded circuits of length four in the
ambient link. Therefore, the universal cover of the presentation 2-complex
does not contain any flat planes, and so the LOT group is hyperbolic. Es-
sentially, the largest pieces of flat planes that exists in the universal cover
are strips of width 2 squares which are centered on translates of the a0-axis.

There is a circle-valued Morse function on the presentation 2-complex of
this group, defined by mapping each directed edge once around the target
circle. The ascending and descending links are trees; they are the sublinks
of the link in Figure 8 spanned by the negative and by the positive vertices
respectively. Proposition 1.5 implies that the LOT group is free-by-cyclic,
and an examination of the rank of the vertex preimage shows that it is in
fact F7 oZ. Finally, since the ambient group is hyperbolic, the F7 subgroup
is exponentially distorted in the LOT group.

The LOT group can be mapped onto Z2 by sending each ai to the non-
trivial element of Z2. The complex K is the double cover of the presentation
2-complex corresponding to the kernel of this epimorphism. Its fundamen-
tal group is also hyperbolic of the form F7 o Z where the F7 subgroup is
exponentially distorted. The 1-skeleton of K has two vertices, v1 and v2,
and the subgraph Θ ⊂ K (1) consisting of directed edges a0, . . . , a7 from v1

to v2 has fundamental group isomorphic to this F7. We let â0, . . . , â7 denote
the corresponding edges directed from v2 to v1.
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(2): The hyperbolic surface Σ, and the complex X = Σ ∪Θ K.
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Figure 9. The non-positively curved, squared surface Σ.

Identifying the a0 edge pairs, the xi edge pairs, and the yi edge pairs in
Figure 9 produces a closed hyperbolic surface Σ with two vertices. Let v1 be
the vertex where the yi loops are based, and v2 be the vertex where the xi

loops are based. The surface Σ contains a copy of the graph Θ. Identifying
the surface Σ with the complex K along the copies of Θ gives a non-positively
curved squared complex X = Σ ∪Θ K with hyperbolic fundamental group.
To verify this, it is sufficient to check that Lk(v1, X) and Lk(v2, X) are

both large, and then to check that X̃ does not contain any isometrically
embedded flat planes. To this end, note that because the links Lk(vi,K)
are large, any short loop in Lk(vi, X) must contain a segment of Lk(vi,Σ).
But each Lk(vi,Σ) is a circle with combinatorial length 32 with the distance
between any two a±

i at least four (see Figure 10). Thus the links Lk(vi, X)
are large. Moreover, the only circuits of length four come from those in K.
As the original presentation 2-complex of the LOT group (which is double
covered by K) has no flat planes in its universal cover, it follows that π1(X)
is hyperbolic.
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Figure 10. Pieces of the surface links Lk(v1,Σ) and Lk(v2,Σ).

Note that the surface group π1(Σ) is a subgroup of the hyperbolic group
π1(X), since π1(X) is obtained from π1(Σ) via free product with amalga-
mation. Note also that this surface subgroup is exponentially distorted in
π1(X), since the amalgamating free subgroup π1(Θ) is quasi-convex in π1(Σ)
and is exponentially distorted in π1(K) and hence in π1(X). All that re-
mains is to apply Theorem 1.8, choosing Γ carefully so that π1(C(X)) is
hyperbolic.

(3): The completion of X to C(X).
Figure 11, without edge labels and orientations, shows Γ×[0, 1], with Γ×0

at the bottom and Γ × 1 at the top. The maps ϕ1 and ϕ2 are defined as
indicated by the edge labels and orientations on Γ×0 and Γ×1, respectively.
The complex C(X) is the union of X with Γ× [0, 1] glued together using the
maps ϕ1 and ϕ2. Hereinafter, all subscripts are to be interpreted modulo 8.
There are several conditions that must be satisfied by the various unspecified
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subscripts involved in the definition of the maps ϕi. For the present, we note
that there are precisely four choices of triple (z, p, q) that work: (3, 6, 7),
(4, 7, 3), (6, 2, 1), and (7, 2, 6). The conditions imposed on the choices of
subscripts for the x and y edges are more easily met. In particular, the
construction will work as long as j, k, n,m are distinct and dfferent both
from z and from z − 1.
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Figure 11. The complex Γ × [0, 1].

One may now check that these maps ϕ1 and ϕ2 are f -link filling. It
is also possible to check directly that the conclusions of Theorem 1.8 hold
for C(X). We proceed as follows: describe the extension of the Morse
function, show that the new ascending and descending links are all trees,
argue that the complex C(X) has large links, and that the subcomplex X
locally isometrically embeds, and finally argue that π1(C(X)) is hyperbolic.

Morse function extension. Here is an explicit description of a Morse function

f̂ : C(X) → S1 which extends f . We need to extend the function over the
2-cells of Γ × [0, 1]. This will be by the usual “linear” extension, once we
have defined the Morse function on the 1-cells of Γ× [0, 1]. We have already
defined the function on the 1-cells in Γ×0 and Γ×1 since these are identified
with 1-cells of X, and f is already defined on X. So we only have to define

the function f̂ on the six 1-cells of the form w × [0, 1], where w is a vertex
of Γ. Label these edges as r1, r2, s1, s2, t1, t2, as indicated in Figure 11, and

orient each edge from the 0 end to the 1 end. The map f̂ sends each ti
edge once around the target circle, sends s2 and each ri three times around
the target circle, and sends s1 five times around the target circle. Thus

from the perspective of the Morse function f̂ , the 2-cells of Γ × [0, 1] are
parallelograms and trapezoids, as shown in Figure 12. The unlabeled edges
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in the center trapezoid of Figure 12 range over {bz+1, . . . , b7, âq, b0, . . . , bz−1}
for the upper edge, and over {bz, . . . , b7, âp, b0, . . . , bz−2} for the lower edge.
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Figure 12. The Morse function f̂ on the new 2-cells of C(X).

Ascending and descending links. The ascending and descending links with

respect to f̂ are described as follows. Start with the ascending and descend-
ing links of v1 and v2 in the 2-complex X. These are drawn in Figure 13 for
v1 and in Figure 14 for v2.
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Figure 13. Descending and ascending links of v1 in X.

To form the corresponding ascending and descending links in C(X), we
add three new vertices to each of these links, labeled and attached as follows:

In Lk↑(v1, C(X)), the three new vertices are: r−1 , which is joined by a

new edge to y−m; r−2 , which is joined by an edge to y−
n ; and s−2 , which is

joined by an edge to a−
z . In Lk↓(v1, C(X)), the three new vertices are: s+

1 ,

which is joined to both â+
q and all the b+

i ; t+1 , which is joined to y+
k ; and t+2 ,

which is joined to y+
j .
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In Lk↑(v2, C(X)), the new vertices are: t−2 , joined to x−
k ; t−1 , joined to

x−
j ; and s−1 , joined to both â−

p and all the b−i . In Lk↓(v2, C(X)), the new

vertices are: r+
2 , joined to x+

m; r+
1 , joined to x+

n ; and s+
2 , joined to a+

z .
Clearly all ascending and descending links in C(X) are trees.
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Figure 14. Ascending and descending links of v2 in X.

Large links and local isometric embedding. Now we verify that the links of
the vertices vi in C(X) are large. We have already seen that the links of
the vi in X are large. From the proof of Theorem 1.8, we know that we
only have to check that the maps ϕi are local isometric embeddings. To
check that ϕ1 is a local isometric embedding at v1 we need to verify that
the following two subsets of Lk(v1, X) are π-separated:

{y−m, y+
n }, {y

+
m, y−n , b+

z−1}, {a
−
z , b+

0 , . . . , b+
z−2, b

+
z , . . . , b+

7 , â+
p },

and to check that ϕ1 is a local isometric embedding at v2 we need to verify
that the following subsets of Lk(v2, X) are π-separated:

{b−0 , . . . , b−7 , â−p }, {a
+
z , x−

j , x+
k }, {x

+
j , x−

k }.

Likewise, to see that ϕ2 is a local isometric embedding at v1 we need to
verify that the following subset of Lk(v1, X) is π-separated:

{b+
0 , . . . , b+

7 , â+
q }, {a

−
z , y−j , y+

k }, {y
+
j , y−k },

and to check that ϕ2 is a local isometric embedding at v2 we need to verify
that the following two subsets of Lk(v2, X) are π-separated:

{x+
n , x−

m}, {x−
n , x+

m, b−z }, {a
+
z , b−0 , . . . , b−z−1, b

−
z+1, . . . , b

−
7 , â−q }.

As long as we choose z 6= j 6= k 6= z − 1 and z 6= n 6= m 6= z − 1, and
choose p and q so that neither (â+

p , a−z ) nor (â−q , a+
z ) are adjacent pairs in

the appropriate Lk(vi,K), these sets will be π-separated in the links both
of K and of Σ. It follows that they are π-separated also in the appropriate
links of X.
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The fundamental group of C(X) is hyperbolic. It remains only to show that
π1(C(X)) is hyperbolic. Equivalently, we have to check that the universal
cover of C(X) does not contain any isometrically embedded flat planes. For
this it is helpful to have a more complete description of the links in C(X).
Each Lk(vi, C(X)) is the union of Lk(vi,K), Lk(vi,Σ), and edges coming
from the corners of squares in Γ × [0, 1]. Figure 8 shows the links in K
(replacing a+

i with â+
i in the link of v1, while a−i becomes â−i in the link of

v2). Figure 10 shows Lk(vi,Σ), while the new portions coming from Γ×[0, 1]
are shown in Figure 15, where the unlabeled vertices are, on the left, all the
b+
i except b+

z−1, and on the right, all the b−i except b−z .
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Figure 15. The portions of Lk(v1, C(X)) and Lk(v2, C(X))
contributed to by Γ × [0, 1].

We first show that no squares lifted from Σ can be contained in any flat
plane P . Suppose σ is a square in P covering a square in Σ. The square
in Σ covered by σ has either two xi sides or two yi sides. Consider first the
case that this square has two xi sides, and let w be the corner of σ shared
by the lifts of these two sides in σ. Thus Lk(w,P ) is a circuit of length four
with vertices labeled x+

i x−
i AB for some labels A and B. We will show that

there are no choices of A and B that can complete this circuit. Figure 16
shows the possible choices for A and B, as they depend on i. We need to
show that none of the vertices on the far right in Figure 16 is adjacent to
x+

i in Lk(v2, C(X)). From Figures 10 and 15 we see that x+
i is not adjacent

to a+
i , b−z , or any other x+

i′ . We can rule out a+
z by choosing j 6= z − 1.

The case that σ contains two sides labeled yi is similar. If the purported
length four circuit in P is of the form y−

i y+
i AB, one finds that possibilities

for B are other y−
i′ , b+

z−1, or a−i+1 (none of which is adjacent to y−
i ), or

possibly a−z , in the case i = k. Thus by choosing k 6= z, we ensure there are
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PSfrag replacements
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i
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2

r+

1

b−i

t−2

t−1

b−z

x+
m

x+
n

a+

i

x+

j

x+

k

a+
z

(i = n)

(i = m)

(i = k)

(i = j)

}

}

Figure 16. Finding a circuit around a vertex in P .

no length four circuits of this form. This rules out the presence of squares
lifted from Σ in any purported flat plane P .

Now consider the possibility that P contains squares lifted from K and
from Γ × [0, 1]. In particular, there is some edge of P along which a square
from K meets a square from Γ× [0, 1]. This edge must be a lift either of az,
âp, or âq. In any case, this edge jonis lifts of v1 and of v2. Let v be the lift of
v1 on this edge. Then Lk(v, P ) is a circuit of length four in Lk(v1, C(X)),
with vertices labeled, say XY ZW , where X ∈ {a−

z , â+
p , â+

q }. Note that there
must be some other edge incident to v lying between a square lifted from
K and a square lifted from Γ × [0, 1]. In particular, one of Y , Z, or W is
also labeled a−z , â+

p , or â−q . If we choose z, p, and q so that these vertices
all have combinatorial distance at least three in Lk(v1, C(X)), it will follow
that P cannot contain squares lifted from K and from Γ × [0, 1]. There are
precisely four choices for the triple (z, p, q) satisfying this, and all previously
imposed, conditions. They are (3, 6, 7), (4, 7, 3), (6, 2, 1), and (7, 2, 6).

Because π1(K) is hyperbolic, no flat plane can consist entirely of squares
lifted from K. Thus with any of the four allowed choices for (z, p, q), we find
that any flat plane P consists entirely of squares lifted from Γ× [0, 1]. To see
that such a plane cannot exist, we first note that it cannot contain any of
the four squares of Γ× [0, 1] with x or y sides, as each side of this type occurs
exactly once in Γ × [0, 1], so that it is not possible to extend P across such
an edge. It follows then that no square with an r side can be contained in
P , as such a square must be adjacent across its r edge to a square with an x
or y edge. Thus P consists entirely of squares from the “middle” section of
Γ× [0, 1]. Fix a point u in the interior of such a square, and consider a lift in
P of the “vertical” segment u× [0, 1] ⊂ Γ× [0, 1]. Because P consists entirely
of squares from Γ× [0, 1], this segment lifts to a bi-infinite line in P . On the
other hand, moving in the positive direction along this line, one successively
crosses successive bi edges before finally intersecting âq, at which point the
line cannot be extended in Γ× [0, 1]. It follows that no such plane P exists,
so π(C(X)) is hyperbolic. �

Remark 4.1. We mentioned in the introductory paragraph to this section
that the ambient free-by-cyclic group in this example is of the form F65 oZ.
Here is one way to see this. From Proposition 1.5 we know that the rank
of the free kernel is equal to the rank of the preimage of the basepoint of
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Figure 17. Circle vertex preimages in the 2-cells of Γ×[0, 1]
(cf. Figure 12).

the target circle. This preimage is a graph with 12 vertices: v1, v2, two
points dividing the edges r1, r2, s2 into thirds, and four points dividing s1

into fifths. This graph inherits 14 edges from the subcomplex K (diagonals
of squares), 16 edges from the surface Σ (diagonals of squares), and a total
of 46 from the 2-cells of Γ × [0, 1] (see Figure 17). This makes a total of 76
edges, and so an Euler number of 12 − 76 = −64 = 1 − 65. Therefore, the
graph has rank 65.

5. Questions

We have seen how to construct hyperbolic free-by-cyclic groups containing
exponentially distorted surface subgroups. Do these groups also contain
quasi-convex surface subgroups?

Question 5.1. Does every CAT(0) free-by-cyclic group that contains a non-
linearly distorted closed hyperbolic surface subgroup, also contain a quasi-
convex closed hyperbolic surface subgroup?

The following related question is also open.

Question 5.2. Does every hyperbolic free-by-cyclic group contain a closed
hyperbolic surface subgroup?

This latter question is a special case of the question (due to Gromov) of
whether all one-ended hyperbolic groups contain closed hyperbolic surface
subgroups.

Finally, we note that all the free-by-cyclic groups which we construct in
this paper are CAT(0). It is tempting to think that Theorem 1.8 could be
used to construct CAT(0) structures for all hyperbolic free-by-cyclic groups.
However, John Crisp and Noel Brady [2] have found infinitely many hy-
perbolic free-by-cyclic groups that are not CAT(0) in dimension 2. It is
not known if these groups are CAT(0). The following question still remains
open.

Question 5.3. Is every hyperbolic free-by-cyclic group CAT(0)?
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