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Chapter 1

Basic Theory

This chapter gives a review of the basic notions of vector space and linear transformation that you
have encountered in Math 3333. There is a somewhat more abstract/general perspective this time
around however. We work with vector spaces over an arbitrary field rather than just the real or
complex number field.

Most of the topics should seem familiar to you if you recall your Math 3333 course notes. Topics
include: vector spaces, subspaces, direct sums, bases, dimensions, coordinates, linear transforma-
tions, matrices, change of bases and similar matrices, rank, nullity, linear functionals, dual spaces,
transposes and adjoints, determinants and matrix inverses.
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1.1 Vector Spaces

Definition 1.1.1. A field is a set K together with two operations called multiplication (denoted
by juxtaposition) and addition (denoted by +) which satisfy the following axioms:

1. x+ y = y + x for all x, y ∈ K

2. x+ (y + z) = (x+ y) + z for all x, y, z ∈ K

3. There exists a unique zero element 0 ∈ K such that 0 + x = x for all x ∈ K

4. For every x ∈ K there exists a negative −x ∈ K such that x+ (−x) = 0

5. xy = yx for all x, y ∈ K

6. x(yz) = (xy)z for all x, y, z ∈ K

7. There is a unique unit element 1 ∈ K \ {0} such that 1x = x for all x ∈ K

8. For every x ∈ K \ {0} there is an inverse x−1 ∈ K such that xx−1 = 1

9. x(y + z) = xy + xz for all x, y, z ∈ K.

Examples 1.1.2. Examples of fields include Q, R, C, Q(
√

2), Zp (p prime) and the field of con-
structible numbers. We have some inclusions

Q ⊂ Q(
√

2) ⊂ constructible numbers ⊂ R ⊂ C

The classical question of duplicating the cube becomes the question of whether or not 3
√

2 belongs
to the field of constructible numbers.

Non-examples include Z, Zn (n not prime), N, H, Z(
√

2).

Remark 1.1.3. Which field has the most elements: Q or R?
To answer this question we must think about the cardinality of sets.

• Motivation: early counting methods.

• Say that sets X and Y have the same cardinality if there exists a bijection X → Y . Denote
cardinality of X by Card(X).

• Say that Card(X) � Card(Y ) if there is an injective map X → Y .

• Schroeder-Bernstein Theorem: If Card(X) � Card(Y ) and Card(Y ) � Card(X), then
Card(X) = Card(Y ). (Dynamical systems style proof)

• Diagonal counting techniques: Z, N× N and Q all have same cardinality as N.

• R has same cardinality as (0, 1) and so has strictly larger cardinality than Q.

• The power set, 2X , has strictly greater cardinality than the original set X. (pretty Cantor
argument by contradiction).

• Show that (0, 1) and 2N have the same cardinality (dyadic expansion of reals).
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• R has the same cardinality as R× R (via 2N and dyadic expansion of reals) and hence as C.

Definition 1.1.4. Let K be a field. A K-vector space is a set V together with an operation

V × V → V : (v, w) 7→ v + w

called vector addition such that (V,+) is an abelian group, and an operation

K × V → V : (k, v) 7→ kv

called scalar multiplication satisfying

1. k(u+ v) = ku+ kv for all k ∈ K and all u, v ∈ V

2. (k + l)u = ku+ lu for all k, l ∈ K and all u ∈ V

3. k(lu) = (kl)u for all k, l ∈ K and all u ∈ V

4. 1u = u for all u ∈ V where 1 ∈ K is the unit element.

Elements of V are called vectors, and elements of K are called scalars.

Examples 1.1.5. Some examples of vector spaces. Throughout these examples K is any field.

1. R
3 from Calc III

2. More generally the space of n-tuples Kn with addition defined by

(k1, . . . , kn) + (l1, . . . , ln) = (k1 + l1, . . . , kn + ln)

and scalar multiplication defined by

l(k1, . . . , kn) = (lk1, . . . , lkn)

is a K-vector space.

3. Km×n under usual addition and scalar multiplication of (m× n)-matrices.

4. Let S be any set. Then the set

KS = {f | f : S → K is a function }

with addition defined (for f, g ∈ KS) by

(f + g)(s) = f(s) + g(s) for all s ∈ S

and scalar multiplication defined (for f ∈ KS and k ∈ K) by

(kf)(s) = kf(s) for all s ∈ S

5. The set of continuous functions C([a, b]) on the closed interval [a, b] ⊂ R under usual definition
of addition and scalar multiplication of functions.
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6. K[x] the set of polynomials with coefficients in K, under usual addition and scalar multipli-
cation of polynomials.

7. If K and L are fields and K ⊂ L then L may be thought of as K-vector space.

Definition 1.1.6. Let v, u1, . . . un be elements of a K-vector space. Say that v is a linear combi-
nation of u1, . . . un if there are scalars k1, . . . kn ∈ K such that

v = k1u1 + · · · knun =
n∑
i=1

kiui

Examples 1.1.7. Linear combination coefficients are fairly easy to work out.

1. Show that (1, 0) is a linear combination of (1, 1) and (2, 1) in R
2.

2. Show that every function R → R is a linear combination of an odd function and an even
function.

Definition 1.1.8. Let V be a K-vector space. A subset U ⊂ V is called a K-vector subspace of
V if

1. U is nonempty

2. U is closed under addition: u1, u2 ∈ U implies u1 + u2 ∈ U

3. U is closed under scalar multiplication: u ∈ U and k ∈ K implies ku ∈ U .

Note that U is itself a K-vector space.

Examples 1.1.9. There are many naturally occurring examples of subspaces.

1. Let ~n ∈ R
3, then

〈~n〉⊥ = {~u ∈ R
3 | ~u · ~n = 0 }

is a subspace of R
3.

2. C∞(R) ⊂ · · · ⊂ C1(R) ⊂ C(R) ⊂ R
R

3. { solutions to d2y
dx2 + λ2y = 0} ⊂ C∞(R)

4. The set of all odd (resp. even) functions R→ R.

5. Let u1, . . . , un ∈ V where V is a K-vector space. Then

S(u1, . . . , un) = {
n∑
i=1

kiui | ki ∈ K}

is called the subspace of V spanned (or generated) by u1, . . . , un. It is just the subspace of
all linear combinations of u1, . . . , un.

6. The collection of all symmetric (n×n)-matrices (resp. skew-symmetric matrices) is a subspace
of Kn×n.
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7. The collections of all self-adjoint (hermitian) matrices is a real subspace of C
n×n but is not

a complex subspace.

8. The solution set of the homogenous system Ax = 0 where A is an (m × n)-matrix, x is an
(n× 1)-vector and 0 is an (m× 1)-vector.

9. The intersection of a family of subspaces of V is again a subspace of V .

10. The space of polynomials of degree at most n is a subspace of K[x].

11. If W1,W2 are subspaces of the vector space V , then their sum, defined by

W1 + W2 = {w1 + w2 |wi ∈Wi (i = 1, 2)}

is a subspace of V .

Definition 1.1.10. Let V be a K-vector space. The elements u1, . . . , un ∈ V are said to be
linearly independent if

k1u1 + · · ·+ knun = 0

implies
k1 = 0, . . . , kn = 0 .

We say that u1, . . . , un are linearly dependent if they are not linearly independent. Equivalently,
we can say explicitly what it means for the collection of vectors u1, . . . , un to be linearly dependent.
Namely, there exists scalars k1, . . . , kn, not all zero, such that

n∑
i=1

kiui = 0 .

Examples 1.1.11. Here are some linearly (in)dependent collections. Can you say which is which?

1. 〈1, 1〉 and 〈2, 1〉

2. 〈1, 1〉, 〈1, 0〉 and 〈2, 1〉

3. cos(4x) and sin(4x) in C∞(R)

4. A non-zero odd function and a non-zero even function in R
R.

Definition 1.1.12. Say that the set {u1, . . . , un} generates the vector space V if S(u1, . . . , un) =
V .

Definition 1.1.13. We say that the set {u1, . . . , un} is a basis for the vector space V if

1. u1, . . . , un are linearly independent

2. u1, . . . , un generate V

Examples 1.1.14. Find simple bases for the following spaces.

1. Kn
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2. Kn×n

3. Solutions to the equation d2y
dx2 + λ2y = 0 where λ > 0 is real.

4. The space of polynomials of degree at most n over K.

5. The space of symmetric (n× n)-matrices.

6. The space of skew-symmetric (n× n)-matrices.

Lemma 1.1.15. Let {u1, . . . , un} be a basis for the K-vector space V , and let u ∈ V . Then there
exist uniquely determined scalars α1, . . . , αn ∈ K such that

u = α1u1 + · · ·+ αnun

Proof. There are two claims: existence and uniqueness. Their proofs involve different properties
of a basis. Existence of the αi follows form the fact that the ui generate V and u ∈ V . Now for
uniqueness. Suppose that there are scalars βi ∈ K such that

α1u1 + · · ·αnun = β1u1 + · · ·βnun .

Then we get
(α1 − β1)u1 + · · ·+ (αn − βn)un = 0

and so, by linear independence of the ui, we conclude that (αi − βi) = 0 for all i. That is αi = βi
for all i, and so uniqueness is established. �

Definition 1.1.16. Let {u1, . . . , un} be a basis for the vector space V , and let u ∈ V . The n-tuple
of scalars (α1, . . . , αn) with the property that

∑n
i=1 αiui = u is called the coordinate n-tuple of the

vector u with respect to the basis {u1, . . . , un}. We call the αi coordinates of u w.r.t. the basis
{u1, . . . , un}.

Lemma 1.1.17. Let {u1, . . . , un} be a basis for the K-vector space V . Then the coordinate map,

ψ : V → Kn : u 7→ (α1, . . . , αn)

where the αi are coordinates of u w.r.t. the basis {u1, . . . , un}, is an isomorphism of vector spaces
(bijective, and respects addition and scalar multiplication).

Proof. Exercise! �

Theorem 1.1.18. Let V be a K-vector space. If {u1, . . . , un} is a linearly independent set of
vectors in V and if {v1, . . . , vm} generates V , then

n ≤ m.

In other words, the cardinality of a linearly independent set is less than or equal to the cardinality
of a generating set.
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Proof. We know that u1 6= 0, since it is part of a linearly independent set (verify this!). Now
{v1, . . . , vm} generates V implies that

u1 = α1v1 + · · ·+ αmvm

for some scalars αi. Since u1 6= 0 we know that not all the αi are zero. Suppose (by reordering the
vj if necessary) that α1 6= 0. Then we can “solve for v1” to get

v1 =
1
α1
u1 −

α2

α1
v2 − · · · −

αm
α1

vm .

But this means that {u1, v2, . . . , vm} generates V .
Again, u2 ∈ V and {u1, v2, . . . , vm} generates V implies that there are scalars β1, . . . , βm ∈ K

such that
u2 = β1u1 + β2v2 + · · ·+ βmvm .

Note that β2, . . . , βm cannot all be zero since the set {u1, u2} is linearly independent. We may
assume (by relabeling if necessary) that β2 6= 0. As before we can “solve for v2” and conclude that
{u1, u2, v3, . . . , vm} generates V . (Provide details!).

Note that if n > m (the argument is by contradiction here) then we can proceed as above (prove
the inductive step!) to replace all the vi’s by ui’s and get that {u1, . . . , um} generates V . But then
we would have (under the assumption that n > m) scalars γ1, . . . , γm such that

um+1 = γ1u1 + · · ·+ γmum .

But this contradicts the linear independence of u1, . . . , un. �

Corollary 1.1.19. Let {u1, . . . , un} and {v1, . . . , vm} be two bases for a vector space V . Then
m = n.

Proof. By definition of a basis, we have that {u1, . . . , un} is linearly independent, and that
{v1, . . . , vm} generates V . Thus Theorem 1.1.18 implies that n ≤ m.

However, we also know that {v1, . . . , vm} is linearly independent, and that {u1, . . . , un} gener-
ates V . Now Theorem 1.1.18 gives us m ≤ n.

Combining the two inequalities we get n = m. �

Definition 1.1.20. A vector space is said to be finite dimensional if it has a finite basis. Otherwise
it is said to be infinite dimensional. If the K-vector space V is finite dimensional, then the number
of elements in any basis of V is called the dimension of V , and is denoted by dimK(V ).

Examples 1.1.21. Say which of the following vector spaces are finite dimensional. Compute the
dimension in the cases where it is finite.

1. R as an R-vector space.

2. Q(
√

2) as a Q-vector space.

3. C as an R-vector space.

4. R as a Q-vector space.
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5. C as a C-vector space.

6. K[x] as a K-vector space.

7. Set of polynomials of degree at most n as a K-vector space.

8. Km×n as a K-vector space.

9. The space of (n× n)-symmetric real matrices as an R-vector space.

10. The space of (n× n)-skew symmetric real matrices as an R-vector space.

11. C([0, 1]) as an R-vector space.

12. The space of solutions to the equation d2y
dx2 + λ2y = 0 where λ > 0 is real, as an R-vector

space.

13. The space of solutions to the homogenous system (remember Math 3333!?)

Am×nxn×1 = 0m×1 .

14. We have seen in 1.1.5.7 that if K ⊂ L are fields, then L is a K-vector space. Suppose that
K ⊂ L ⊂ M are fields, and that L is a finite dimensional K-vector space, and M is a finite
dimensional L-vector space. Prove that M is a finite dimensional K-vector space, and that

dimK(M) = dimK(L)dimL(M) .

Remark 1.1.22. The field of constructible numbers has infinite dimension over Q. However, the
rational vector subspace of R which is spanned by a finite set of constructible numbers, {α1, . . . , αn},
has finite dimension over Q. It can be shown (see a standard text on Abstract Algebra) that
dimQ(S(α1, . . . , αn)) is always a power of 2. It can also be shown that dimQ( 3

√
2) = 3. Now, if 3

√
2

is constructible, it belongs to (S(α1, . . . , αn) for some set {α1, . . . , αn} of constructible numbers.
Therefore 1.1.21.(14) implies that 3 should divide a power of 2 which is impossible! Thus 3

√
2 is

not constructible. This is one neat application of vector spaces; in the resolution of a 2000 year old
problem from geometry: the problem of duplicating the cube.

Next result says that (at least in finite dimensional case) we can always complete any linearly
independent set to a basis, and we can always “trim away at” any generating set to obtain a basis.

Proposition 1.1.23. Let V be a finite dimensional vector space. Let Z be a generating set for V ,
and let X be a linearly independent subset of Z. Then there exists a basis Y for V such that

X ⊂ Y ⊂ Z

Proof. Let Y be a maximal linearly independent subset of Z which contains X. Complete the
proof!

Hint, to show generation, it suffices to show that Y generates all the elements of Z. Given
z ∈ Z \ Y then {z, y1, . . . , ym} is linearly dependent (why?), and so there exist scalars λ0, . . . , λm
such that

λ0z + λ1y1 + · · ·+ λmym = 0 .

Moreover λ0 6= 0 by linear independence of Y (why?!). Now finish the proof. �
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Proposition 1.1.24. Let U be a finite dimensional K-vector space, and let V ⊂ U be a subspace.
Then V is finite dimensional and

dimK(V ) ≤ dimK(U) .

Proof. Exercise. �

Definition 1.1.25. Let U and V be K-vector spaces. The external direct sum of U and V is
denoted by U ⊕ V , and is defined to be the set U × V together with coordinate-wise addition and
scalar multiplication.

(u1, v1) + (u2, v2) = (u1 + u2, v1 + v2)

and
k(u, v) = (ku, kv) .

Now suppose that U and V are subspaces of the K-vector space W . We say that W is the
internal direct sum of U and V if the following properties hold.

• U ∩ V = 0

• U + V = W

Examples 1.1.26. Here are some natural examples of direct sums.

1. R
2 = R⊕ R

2. R
R = Even⊕Odd [Think about the polynomial version of this]

3. Kn×n = Symm⊕ Skew

Proposition 1.1.27. If U and V are finite dimensional K-vector spaces, and if W = U ⊕V , then
W is also finite dimensional, and

dimK(W ) = dimK(U) + dimK(V )

Proof. Exercise! �

Proposition 1.1.28. Let U and V be subspaces of the K-vector space W . Then the following are
equivalent.

1. W is the internal direct sum of U and V

2. Every element w ∈ W can be written in a unique way as a sum w = u+ v where u ∈ U and
v ∈ V

In this case, W is isomorphic to the external direct sum of U and V . Conversely, if a vector
space W is isomorphic to the external direct sum U ⊕ V of vector spaces U and V , then W can
be decomposed as the internal direct sum of subspaces U ′ and V ′ with U ′ isomorphic to U and V ′

isomorphic to V .

Proof. Exercise! �

Remark 1.1.29. Because of the isomorphism above, we denote any direct sum (internal or exter-
nal) of U and V by U ⊕ V .
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1.2 Linear Transformations and Coordinates

Definition 1.2.1. Let U and V be vector spaces over the field K. A linear transformation (or
linear operator) from U to V is a map T : U → V such that

T (u1 + u2) = T (u1) + T (u2) for all u1, u2 ∈ U

and
T (λu) = λT (u) for all u ∈ U and all scalars λ ∈ K.

Examples 1.2.2. Some examples of linear operators.

1. IU : U → U : u 7→ u for all u ∈ U

2. O : U → V : u 7→ 0 for all u ∈ U

3. kIU : U → U : u 7→ ku for all u ∈ U . Here k ∈ K.

4. Differentiation of polynomials, D : K[x]→ K[x].

5. Am×n : Kn → Km : Xn×1 7→ AX

6. T : Km×n → Km×n : A 7→ Pm×mAQn×n for given P ∈ Km×m and Q ∈ Kn×n.

7. Int : C(R)→ C1(R) : f 7→ Int(f) where

Int(f)(x) =
∫ x

0
f(t)dt .

8. The coordinate map V → Kn which takes a vector to its coordinates wit respect to a basis
{u1, . . . , un} for V .

9. Rotations in R
2

10. Reflections in R
n (starting with n = 2)

11. Projections in R
n

12. The transpose map Km×n → Kn×m

Properties 1.2.3. Here are some elementary properties which are satisfied by linear transforma-
tions.

1. T : U → V satisfies T (−u) = −T (u) for all u ∈ U

2. T : U → V satisfies T (0) = 0

3. T preserves collinearity.

4. T preserves parallelograms.

5. T : R→ R is linear if and only if its graph is a straight line through the origin.
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6. T (
∑n

i=1 αiui) =
∑n

i=1 αiT (ui)

7. S, T : U → V linear, {ui} generates U , and T (ui) = S(ui) for all i, implies that S = T

8. Let {ui}ni=1 be a basis for U and let wi ∈ V , then there exists a unique linear mapping
T : U → V such that T (ui) = wi for all 1 ≤ i ≤ n.

Definition 1.2.4. Let T : U → V be a linear mapping. Then

Ker(T ) = {u ∈ U |T (u) = 0}

and
Im(T ) = {T (u) |u ∈ U}

are vector subspaces of U and V respectively. (prove this!) We define

Rank(T ) = dimK(Im(T ))

and
Nullity(T ) = dimK(Ker(T )) .

Properties 1.2.5. Note that (prove it!) the linear map T is injective if and only if Ker(T ) = 0.

Examples 1.2.6. We’ve seen many examples in Math 3333.

1. Ker(Am×n) is the solution set to the homogenous system

Am×nXn×1 = 0m×1 .

2. General solution to linear system Am×nXn×1 = Bm×1 consists of a particular solution to
Am×nXn×1 = Bm×1 plus the general solution to the homogenous system Am×nXn×1 = 0m×1.

3. Projection map of R
3 onto R

2.

Theorem 1.2.7. Let T : U → V be a linear map, and suppose that {u1, . . . , uk} and {T (w1), . . . , T (wl)}
are bases for Ker(T ) and Im(T ) respectively. Then {u1, . . . , uk, w1, . . . , wl} is a basis for U . In
particular,

dimK(U) = Nullity(T ) + Rank(T ) .

Proof. Exercise! There are two things to prove about the set of vectors {u1, . . . , uk, w1, . . . , wl}: it
is a linearly independent set and it generates U .

Linear independence. Suppose

α1u1 + · · ·+ αkuk + β1w1 + · · ·+ βlwl = 0 .

We have to prove that α1 = 0, . . . , αk = 0, β1 = 0, . . . , βl = 0. First apply T to both sides of the
equation above. Does this simplify at all? Why? What does the resulting equation tell you about
the βi? Why? Now plug this information about the βi back into the original equation above. What
do you get now? What can you conclude about the αi? Why?
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Generating set. Given u ∈ U you have to find scalars αi and βj so that

u = α1u1 + · · ·+ αkuk + β1w1 + · · ·+ βlwl .

First look at T (u). What do you know about T (u) and the T (wj)? What does this tell you about u
and a linear combination of the wj? (careful here!). How do the ui come in to play here? conclude
the proof. �

Corollary 1.2.8. Suppose that T : U → V is a linear map of finite dimensional vector spaces such
that dimK(U) = dimK(V ). Then T is injective if and only if T is surjective.

Proof. Use result above, together with 1.2.5. �

Definition 1.2.9. Let U and V be K-vector spaces with bases B1 = {u1, . . . , un} and B2 =
{v1, . . . , vm} respectively. Let ψ1 : U → Kn and ψ2 : V → Km be the corresponding coordinate
isomorphisms. Suppose that T : U → V is a linear map. We have seen in 1.2.3.8 that T is uniquely
determined by the vectors {T (ui)}ni=1.

Define a matrix AT ∈ Km×n by setting ψ2(T (uj)) to be its j-th column for each 1 ≤ j ≤ n. In
other words, define

aij is the i-th coordinate (w.r.t. B2) of the vector T (uj).

We can visualize this in terms of matrices as follows

At =

[T (uj)]B2

↓ α11 · · · α1j · · · α1n
...

...
...

αm1 · · · αmj · · · αmn


Note that there is a commutative diagram

U

Kn Km

V-

-

? ?

T

AT

ψ1 ψ2

That is,
ψ2(T (u)) = AT (ψ1(u)) for all u ∈ U .

We call AT the matrix of the linear map T with respect to the bases B1 for U and B2 for V .
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Examples 1.2.10. Compute the matrices of the following linear maps with respect to the given
bases or verify the claims that are made as appropriate. Keep in mind that the ψ isomorphisms
take us from the realm of abstract vector spaces into the concrete coordinate world of Kn spaces.

1. D is the derivative linear map from the space U of polynomials of degree at most n into itself,
and B1 = B2 = {1, x, x2, . . . , xn}.

2. U = V = R
n, T is the identity map, B1 = B = {v1, . . . , vn}, and B2 is the standard basis:

{e1, . . . , en}. This matrix is called the change of basis matrix from the basis B to the standard
basis. We shall denote it by PB.

The matrix which changes from the standard basis to B is just P−1
B .

3. Let B1 and B2 be two bases for R
n. The change of basis matrix from B1 to B2 is given by the

matrix
P = P−1

B2
PB1

4. Let T : U → U be a linear transformation on a finite dimensional vector space U . Suppose
that T has matrix A with respect to the basis B for U , and let B′ be another basis for U .

Then the matrix for T with respect to the basis B′ is given by

PAP−1

where is the change of basis matrix from B to B′.

5. T : R
n → R

n is the linear map which is defined as a permutation of the standard basis of R
n

and extended by linearity. Basis for R
n is standard.

Do an explicit computation for the symmetric group S3 of all permutations of a set of three
elements which acts by linear transformations on R

3. See that these give isometries of R
3

which preserve the 2-simplex with vertices at (1, 0, 0), (0, 1, 0) and (0, 0, 1). Generalize this
to higher dimensions.

6. Let U , V , and W be K-vector spaces with chosen bases B1, B2, and B3 respectively. Let
T ∈ L(U, V ) and S ∈ L(V,W ) have matrices A and B (respectively) with respect to the given
bases. Then ST has matrix AB with respect to the bases B1 and B3.

7. LetRθ denote the linear transformation of R
2 which consists of a standard rotation of θ radians

about the origin. Here standard means counterclockwise for positive θ. Let Lθ denote the
linear transformation of R

2 which consists of a reflection in the line lθ which contains the
origin and makes an angle of θ radians in standard position (that is, x-axis is initial edge, and
lθ is terminal edge, and positive angles are measured in the usual counterclockwise direction).

We have

Rθ =
(

cos θ − sin θ
sin θ cos θ

)
Lθ =

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
Verify by matrix multiplication that RθRφ = Rθ+φ and that LθLφ = R2(θ−φ). Interpret these
results geometrically.

Compute and interpret the following LθLθ, LφLθ, LθRφ, and RφLθ.
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8. Realize the group of isometries of the Euclidean plane as a group of linear transformations of
R

3 to itself. What is the special form of these linear transformations. Geometric interpreta-
tions.

Definition 1.2.11. Let U and V be K-vector spaces. We denote by L(U, V ) the set of all linear
mappings U → V , and by L(U) the set of all linear mappings U → U .

Theorem 1.2.12. Let U and V be K-vector spaces. Then we have

1. L(U, V ) is a K-vector space, with operations defined by

(S + T )(x) ,= S(x) + T (x) ,

and
(kT )(x) = k(T (x))

for all S, T ∈ L(U, V ), x ∈ U , and all k ∈ K.

2. Let W be a K-vector space. Composition of maps gives a multiplication

L(V,W )× L(U, V ) → L(U,W ) : (S, T ) 7→ ST

where ST (u) = S(T (u)) for all u ∈ U . This multiplication satisfies

(a) (RS)T = R(ST )

(b) R(S + T ) = RS +RT

(c) (R+ S)T = RT + ST

(d) (kS)T = k(ST ) = S(kT )

provided each is well-defined.

Proof. Easy! Exercise. �

Corollary 1.2.13. Let U be a K-vector space. Then L(U) is

1. a K-vector space

2. a ring under S + T and ST

3. (kS)T = k(ST ) = s(kT ) for all k ∈ K and for all S, T ∈ L(U).

Definition 1.2.14. Let K be a field of scalars. A set X on which there is an addition, a multipli-
cation, and a scalar multiplication all satisfying 1–3 of the corollary above is called a K-algebra.

Proposition 1.2.15. Let U and V be K-vector spaces of dimension n and m respectively. Then
L(U, V ) is isomorphic to Km×n as K-vector spaces. Furthermore, L(U) is isomorphic to Kn×n as
K-algebras.

Proof. Exercise. �
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Corollary 1.2.16. Let U and V be K-vector spaces of dimension n and m respectively. Then

dimK(L(U, V )) = mn

and
dimK(L(U)) = n2 .

Proof. Exercise. �

Remark 1.2.17. The Einstein summation convention requires one to sum over any repeated upper
and lower indices in an expression (involving tensors). For example the expression

∑n
j=1 α

j
ivj

becomes the simpler expression αjivj . We shall not make too much use of this tensor notation
(upper and lower indices) in this course. Nevertheless, it’s good to be aware of it.
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1.3 Linear functionals and duality

Definition 1.3.1. Let U be a K-vector space. A linear functional on U is a linear transformation
U → K. The vector space L(U,K) of all linear functionals on U is called the dual space of U and
is denoted by U∗.

Examples 1.3.2. Examples of linear functionals include.

1. Let (γ1, . . . , γn)T ∈ Kn. Then

Kn → K : (k1, . . . , kn)T 7→ (γ1, . . . , γn)(k1, . . . , kn)T

is a linear functional on Kn.

2. The definite integral I(f) =
∫ b
a f(t)dt is a linear functional on C([a, b]).

3. The trace of a matrix defines a linear functional on Kn×n.

Remark 1.3.3. By Corollary 1.2.16 if U is a finite dimensional K-vector space, then

dimK(U∗) = dimK(L(U,K)) = dimK(U)dimK(K) = dimK(U)

so that U and U∗ are both isomorphic to a given Kn, and hence to each other. However, this is
not a natural isomorphism since it depends on a choice of bases for U and U∗.

Definition 1.3.4. Bracket notation for linear functional f acting on vector u, 〈 f , u 〉.

Definition 1.3.5. Kronecker delta is defined for i, j ∈ {1, . . . , n}

δij =
{

1 if i = j
0 if i 6= j

Proposition 1.3.6. Let U be a K-vector space with basis {u1, . . . , un}. Define linear functionals
{f1, . . . , fn} on U by

〈 fi , uj 〉 = δij

Then {f1, . . . , fn} is a basis for U∗ which we call the dual basis to {u1, . . . , un}.

Proof. Exercise. �

Remark 1.3.7. If V has basis {v1, . . . , vm} and {f1, . . . , fm} is a dual basis, then

〈 fi ,
m∑
j=1

cjvj 〉 =
m∑
j=1

cj〈 fi , mj 〉 =
m∑
j=1

cjδij = ci

so that fi picks out the i-th coordinate (with respect to the basis {v1, . . . , vn}) of a vector v ∈ V . If
T : U → V is a linear transformation, and {u1, . . . , un} is a basis for U , then the matrix A = (aij)
of T with respect to these two bases is given by

aij = 〈 fi , T (uj) 〉 .
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The bracket notation makes it clear that U should act as a dual to U∗. This is content of next
proposition.

Proposition 1.3.8. If U is s finite dimensional K-vector space, then U is naturally isomorphic to
U∗∗.

Proof. Exercise. Given v ∈ U , let Lv : U∗ → K be the evaluation map which sends a linear
functional f ∈ U∗ to the scalar f(v) ∈ K. All you have to do is verify the following.

• Lv is a linear functional on U∗.

• The map v 7→ Lv is linear.

• The map v 7→ Lv is bijective.

�

Definition 1.3.9. Let S be a subset of a finite dimensional vector space V . The annihilator of S
is denoted by S◦ and is defined as follows.

S◦ = { f ∈ V ∗ | f(v) = 0 for all v ∈ S }

Properties 1.3.10. The following should be intuitive properties. Give proofs of them all.

1. S◦ is a subspace of the dual space V ∗.

2. If S = {0}, then S◦ = V ∗.

3. If S = V , then S◦ = {0} ⊂ V ∗.

Definition 1.3.11. Let V be an n-dimensional vector space. A hyperspace is a subspace of V
which has dimension (n− 1).

Remark 1.3.12. Hyperspaces in the finite dimensional vector space V are precisely the kernels of
linear functionals on V .

Lemma 1.3.13. Let W be a subspace of the finite dimensional vector space V , then

dim(W ) + dim(W ◦) = dim(V )

Proof. Exercise. Let {v1, . . . , vk} be a basis for W . Complete it to a basis {v1, . . . , vk, . . . , vn} for
V . Let {f1, . . . , fn} be the corresponding dual basis for V ∗. Prove that {fk+1, . . . , fn} is a basis
for W ◦. �

Corollary 1.3.14. Let V be an n-dimensional vector space. Then each k-dimensional subspace
(here k ≤ n) of V is the intersection of (n− k) hyperspaces of V .

Corollary 1.3.15. If W1 and W2 are subspaces of a finite dimensional vector space V . Then
W1 = W2 if and only if W ◦1 = W ◦2 .
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Definition 1.3.16. Let T : U → V be a linear transformation of finite dimensional K-vector
spaces. Then some earlier proposition (in l.t. section) ensures that there is a unique linear trans-
formation T ′ : V ∗ → U∗ satisfying

〈T ′(f) , u 〉 = 〈 f , T (u) 〉 for all u ∈ U and all f ∈ V ∗.

T ′ is called the adjoint of the operator T .

Remark 1.3.17. Note that for f ∈ V ∗ we have just defined T ′(f) to be the composition

T ′(f) = f ◦ T

The adjoint construction gives rise to a homomorphism (verify this!)

Ad : L(U, V ) → L(V ∗, U∗) : T 7→ Ad(T ) = T ′

Proposition 1.3.18. Let T : U → V above have matrix A with respect to bases B1 for U and B2

for V . Then T ′ has matrix AT (transpose) with respect to the respective dual bases for V ∗ and U∗.

Proof. Exercise. �

Proposition 1.3.19. Let T : U → V be a linear transformation of the vector spaces U and V .
Then the kernel of the adjoint T ′ of T is the annihilator of the image of T . In particular, if U and
V are finite dimensional we have

1. rank(T ′) = rank(T ).

2. image of T ′ is the annihilator of the kernel of T .

Corollary 1.3.20. For (n× n)-matrices A we have

rank(A) = rowrank(A) = columnrank(A)
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1.4 Determinants

Definition 1.4.1. Let A ∈ M2×2(K). Then the determinant of A is denoted by det(A) or by |A|
and is an element of the field K defined by

det(A) = a11a22 − a12a21

Remark 1.4.2. For A ∈ M2×2(K), we have A is invertible if and only if |A| 6= 0, and in such a
case we have

A−1 =
1
|A|

(
a22 −a12

−a21 a11

)
Definition 1.4.3. Here’s an inductive definition of determinants of (n×n)-matrices. Throughout
this definition we shall assume that A ∈Mn×n(K) for some field K.

• For i, j ∈ {1, . . . , n} let Âij denote the element of M(n−1)×(n−1)(K) which is obtained by
deleting the i-th row and the j-th column from A.

• If n = 1 we define |A| = a11, otherwise we define |A| inductively by cofactor expansion along
its first row as follows

|A| =
n∑
i=1

(−1)i+1a1i|Â1i|

• The terms (−1)i+j |Âij | are called the ij-cofactors of the matrix A. They shall appear below
in a more general formula for expansion of determinants by any row or column.

Examples 1.4.4. Here are some determinants.

1. det(Lθ) = −1

2. det(Rθ) = 1

3. determinant of upper (lower) triangular matrix

4. Vandermonde determinant: det


1 x1 x2

1 . . . xn−1
1

1 x2 x2
2 . . . xn−1

2
...

...
...

...
1 xn x2

n . . . xn−1
n

 =
∏
i<j(xi − xj)

Properties 1.4.5. Next we list some properties of determinants which can be deduced from the
definition above. You should verify that these properties also hold if we use instead the definition
of the determinant by cofactor expansion along the i-th row. Namely,

deti(A) =
n∑
j=1

(−1)i+jaij |Âij |

so that |A| or det(A) above is actually det1(A). In time, we shall deduce that all these expansions
give the same result, and that you can expand by columns too.
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1. The determinant is a linear function of each column when the other columns are kept fixed.
That is, letting Ai denote the i-th column of A and A′i denote a column vector and k, k′ ∈ K,
we have

det(A1, . . . , kAi + k′A′
i
, . . . , An) = kdet(A1, . . . , Ai, . . . , An) + k′det(A1, . . . , A′

i
, . . . , An)

2. If A has two adjacent columns which are equal, then |A| = 0.

3. Let In denote the (n× n)-identity matrix. Then |In| = 1.

4. If adjacent columns of A are interchanged, then |A| changes sign.

5. If two columns of A are equal, then |A| = 0.

6. If one adds a scalar multiple of one column of A to another, then |A| does not change.

Remark 1.4.6. There are two neat things to note here.

1. Properties 4, 5, and 6 (as well as any deductions from them below) all follow from properties
1–3. So any function of n column vectors which satisfies 1–3 will have to be the determinant
function (from the uniqueness result in 1.4.13 below).

2. Property 6 is the starting point for speedy computations of determinants (recall the hateful
exercises in Math 3333).

The following theorem is a classical tool used in solving systems of linear equations called
Cramer’s Rule.

Theorem 1.4.7. Let A1, . . . , An, B ∈ R
n be column vectors and suppose that det(A, . . . , An) 6= 0.

Then we can solve the linear system

x1A
1 + · · ·+ xnA

n = B

as follows

xj =
det(A1, . . . , B, . . . , An)
det(A1, . . . , Aj , . . . , An)

Theorem 1.4.8. Let A1, . . . , An ∈ R
n be column vectors. If det(A1, . . . , An) 6= 0 then {A1, . . . , An}

is a linearly independent set.

Corollary 1.4.9. If the column vectors A1, . . . , An ∈ R
n satisfy det(A1, . . . , An) 6= 0 then the

linear system
x1A

1 + · · ·+ xnA
n = B

has a solution (which can be found by Cramer’s rule) for any column vector B ∈ R
n.

Definition 1.4.10. A permutation of the set Jn = {1, . . . , n} is just a bijection of this set to itself.
A transposition is a permutation which just interchanges two elements of the set. Cyclic notation
for permutations. The symmetric group Sn.

Lemma 1.4.11. A permutation of Jn is a product of transpositions.
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Proposition 1.4.12. To each permutation σ ∈ Sn we can associate a number ε(σ) ∈ {±1} such
that

1. ε(τ) = −1 for any transposition τ

2. ε(σ1σ2) = ε(σ1)ε(σ2) for all permutations σ1, σ2 ∈ Sn.

In particular, if σ can be expressed as a product of transpositions

σ = τ1 · · · τm

then m is odd (even) according as ε(σ) = −1 or +1.

This next result establishes the uniqueness of determinants. It will be useful in proving some
fundamental results about determinants such as the fact that the determinant of a transpose is the
same as the determinant of the original matrix (which in turn leads to the familiar row or column
cofactor expansion formula). It is also used to establish a geometric interpretation of determinants
in terms of areas and volumes.

Theorem 1.4.13. Let U1, . . . , Un ∈ Kn be column vectors, and let new vectors A1, . . . , An ∈ Kn

be defined by Aj = α1jU1 + · · ·+ αnjUn for scalars αij ∈ K. Then

det(A1, . . . , An) =
∑
σ∈Sn

ε(σ)ασ(1)1αε(2)2 . . . αε(n)ndet(U1, . . . , Un)

In particular, the determinant of a matrix A = (aij) ∈ Kn×n is given by the formula

det(A) =
∑
σ∈Sn

ε(σ)aσ(1)1aε(2)2 . . . aε(n)n

There is another way of stating this. We say that a function of n vector variables (which are each
n-dimensional column vectors!) is n-linear if it is linear in each variable (keeping other variables
fixed). Way that the function is alternating if its output is zero whenever two input variables are
equal and if its output changes sign whenever two input variables are interchanged. The theorem
becomes let D be an alternating n-linear function whose value on the input (e1, . . . , en) is 1, then
D = det.

Theorem 1.4.14. Let A be an (n× n)-matrix and let AT denote its transpose. Then

det(A) = det(AT )

Corollary 1.4.15. The determinant of the (n×n)-matrix A can be evaluated by cofactor expansion
via any row or any column. That is

det(A) =
n∑
i=1

(−1)i+jaij |Âij | =
n∑
j=1

(−1)i+jaij |Âij |

Theorem 1.4.16. Let A and B be (n× n)-matrices. Then

det(AB) = det(A)det(B)
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Corollary 1.4.17. Let A be an invertible (n× n)-matrix. Then

det(A−1) =
1

det(A)

and
A−1 =

1
det(A)

(
(−1)i+j |Âij |

)T
Remark 1.4.18. Mention volumes functions in R

n and their relationship with determinants.
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Chapter 2

Structure of Linear Operators

In the next few sections we shall develop a structure theory for linear transformations on a finite
dimensional vector space. The basic problem that we are faced with is this: given a linear trans-
formation T on a finite dimensional K-vector space V , choose a basis for V with respect to which
T is very easy to understand. For example the matrix of T with respect to our basis has a very
simple form.

What is the simplest form we should hope for? Well, diagonal matrices are very easy to work
with. So we start off in section 2.1 by discussing eigenvectors and diagonalization. You may recall
from Math 3333, that the basic goal is to find a basis for V composed of eigenvectors of T .

There are a number of problems that may occur with our attempts at diagonalization. For
instance, we may not be able to solve the characteristic equation for T over the field K (so we cant
find any eigenvalues for T in K). Or we may find that the dimensions of the eigenspaces do not sum
up to give the dimension of V (so we cant find a basis for V consisting of eigenvectors of T ). We are
led to consider more general T -invariant subspaces, and eventually to the primary decomposition
theorem (section 2.2), and the Jordan (section 2.3) and rational (section 2.3) forms. This theory
involves a beautiful interplay between T -invariant subspaces, and polynomial combinations of the
operator T .
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2.1 Eigenvalues and Eigenvectors, Diagonalization

Definition 2.1.1. • Let T : V → V be a linear operator of a K-vector space V to itself. An
element λ ∈ K is called an eigenvalue of T if there exists a nonzero vector v ∈ V such that

Tv = λv

• Suppose λ ∈ K is an eigenvalue of the linear operator T . Then the collection

{v ∈ V | Tv = λv}

is a subspace of V called the λ-eigenspace of T . It’s elements are called λ-eigenvectors (or
just eigenvectors if the context is clear) of T .

• Note that λ ∈ K is an eigenvalue of T if and only if T −λI is singular (has nontrivial kernel),
and this is true if and only if det(T − λI) = 0. In this case, Ker(T − λI) is precisely the
λ-eigenspace of T .

Examples 2.1.2. 1. (
2 1
1 1

)
There is a basis for R

2 consisting of eigenvectors of the linear operator, T , given by matrix

multiplication by
(

2 1
1 1

)
. We can use this to transform this matrix into a diagonal matrix.

This can be used to compute high powers of our matrix. See Fibonacci sequence applications
(in class).

2. (
cos θ − sin θ
sin θ cos θ

)
This matrix has eigenvectors and eigenvalues only when θ is a multiple of π. In these cases
the original matrix is already diagonal, and the eigenvalues are clearly ±1. In all other cases
the matrix does not have any eigenvalues over R. However, when viewed as a 2-by-2 complex
matrix, this has eigenvalues e±iθ. See earlier homework exercise.

3. (
1 1
0 1

)
This matrix has eigenvalue equal to 1, but R

2 does not have a basis of eigenvectors.

Definition 2.1.3. The characteristic polynomial of the n-by-n matrix A is defined to be the fol-
lowing polynomial in λ

det(A− λI)

Note that the eigenvalues of the linear operator of Kn given by matrix multiplication by A are
precisely the roots of this characteristic polynomial.

Lemma 2.1.4. Similar matrices have the same characteristic polynomials
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Corollary 2.1.5. A linear transformation T : V → V of a finite dimensional vector space has a
well-defined characteristic polynomial. The eigenvalues of T are the roots of this polynomial.

Definition 2.1.6. A linear transformation T : V → V is said to be diagonalizable if there exists a
basis for V comprised entirely of eigenvectors of T .

Lemma 2.1.7. Non-zero eigenvectors of a linear operator T which correspond to distinct eigen-
values of T are linearly independent.

Proof. Suppose vi is a non-zero eigenvector of the linear operator T with corresponding eigenvalue
λi for 1 ≤ i ≤ m, and suppose that the λi are all distinct.

We have to prove that∑
i

αivi = 0 implies αi = 0 for all i.

We do this by induction on m. This is clearly true for m = 1 since we’re considering non-zero
eigenvectors. Applying T to

∑
i αivi = 0 gives∑

i

αiλivi = 0

since T (vi) = λivi for all i. On the other hand, multiplying
∑

i αivi = 0 across by λj gives∑
i

αiλjvi = 0 .

Subtracting these two equations gives∑
i

αi(λj − λi)vi = 0

Note that this sum has really got m − 1 terms (the term i = j vanishes), and so the inductive
hypothesis tells us that the vi (i 6= j) are already linearly independent. Thus αi(λj − λi) = 0 for
each i ∈ {1, . . . ,m} \ {j}. Since the λi are all distinct, we conclude that αi = 0 for all i 6= j.
Putting this back into the original equation gives

0 + αjvj + 0 = 0

and vj 6= 0 gives us that the remaining αj must be 0. Done. �

Theorem 2.1.8. V a finite dimensional vector space, T : V → V a linear transformation, {λ1, . . . , λm}
the set of all distinct eigenvalues of T , and Wi = Ker(T − λiI) for 1 ≤ i ≤ m. Then the following
are equivalent.

1. T is diagonalizable

2. char poly of T is of the form

f =
m∏
i−1

(x− λi)di

and dimK(Wi) = di for 1 ≤ i ≤ m.
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3. dimK(V ) = dimK(W1) + · · ·+ dimK(Wm)

4. V = W1 ⊕ · · · ⊕Wm

Proof. Depending on how you try to answer this, there are at least four implications to prove. Here
we’ll give the minimum of four.

[1 → 2] By definition, T diagonalizable implies that V has a basis {v1, . . . , vn} of eigenvectors of
T . The matrix representation of T with respect to this basis is simply the diagonal matrix with
the eigenvalues on the diagonal. Thus, the characteristic polynomial of T is of the form

fT (x) =
m∏
i=1

(x− λi)di

where di is the number of times λi appears on the diagonal. That is di is the number of λi-
eigenvectors present in the basis {v1, . . . , vn}. We just have to verify that each λi appears, and
that it appears precisely dimK(Wi) times.

• First we verify that each λi appears. Suppose some λi does not appear. This means that
we have a basis for V of eigenvectors of T without ever having to use an eigenvector with
eigenvalue λi. But such an eigenvector is an element of V , and so can be expressed as a
linear combination of the basis elements. That is, a non-zero eigenvector can be expressed
as a linear combination of eigenvectors with different eigenvalues. But this contradicts the
previous lemma!

• Now we have to show that the subspace, S, spanned by all those basis vectors in {v1, . . . , vn}
which correspond to a given eigenvalue, λi say, is equal to the eigenspace Wi. Clearly (exer-
cise!) this subspace is contained in Wi. To prove the reverse inclusion, suppose that v ∈ V is a
λi-eigenvector of T . Since {v1, . . . , vn} is a basis, v can be expressed as a linear combination of
the vi. We have to show that this combination only involves the vj which are λi-eigenvectors.
Well, if not then we get a nontrivial linear dependence relation between eigenvectors with
distinct eigenvalues. Again, this contradicts the previous lemma.

[2 → 3] This is just a dimension count! And it’s trivial. We know from the definition, that the
characteristic polynomial has degree n = dimK(V ). Property 2 tells us that n =

∑m
i=1 di, and it

also tells us that di = dimK(Wi). So we’re done!!

[3 → 4] First we show that the sum W1 + · · · + Wm is direct. To do this it suffices (remember
Midterm I) to prove that Wj ∩

∑
i6=jWi = {0} for each j. But if this intersection contained a

nonzero vector, then it could be expressed in two ways as follows

wj =
∑
i 6=j

wi .

Since wj 6= 0, then at least one of the wi must also be non-zero, and so we obtain another relation
of linear dependence among eigenvectors with distinct eigenvalues, thus contradicting the previous
lemma.
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Now that we know this sum is direct we can say that W1 ⊕ · · · ⊕Wm is isomorphic to
∑m

i=1Wi

which is a subspace of V of dimension
∑m

i=1 dimK(Wi). But property 3 says that this is just
dimK(V ). Thus

∑m
i=1Wi is a subspace of V of the same dimension as V . Thus

∑m
i=1Wi = V and

we’re done.

[4→ 1] If V is a direct sum of eigenspaces, then we can combine bases for these eigenspaces together
to obtain a basis for V . Thus T is diagonalizable by definition. �

Remark 2.1.9. We will establish a neat algorithm for checking if a linear operator is diagonalizable
as a corollary of the Primary Decomposition Theorem in the next section.
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2.2 Annihilating Polynomials, Hamilton-Cayley Theorem, Primary
Decomposition Theorem

The main theme of this section is that one can understand a linear operator acting on a finite
dimensional vector space by analyzing the polynomials which annihilate it. A beautiful practical
existence result for annihilating polynomials is the Hamilton-Cayley Theorem. The main result
which relates the structure of a linear operator on a finite dimensional vector space to the algebra
of one of its annihilating polynomials is the Primary Decomposition Theorem. With this tool in
hand, it will be a very short step to the neat classification of diagonalizable operators result which
was promised in the previous section, and also to the Jordan Normal Form Theorem.

First we define what we mean by an annihilating polynomial.

Definition 2.2.1. Let V be a K-vector space and let T ∈ L(V ). An annihilating polynomial for
T is a polynomial p ∈ K[x] such that p(T ) = 0.

Examples 2.2.2. For example, the simplest annihilating polynomial for the identity operator is
just p(x) = x− 1, for then P (T ) = 0 means T − I = 0 which is true since T = I.

Here is an existence theorem for annihilating polynomials. It’s proof is easy (just remember
that Kn×n is n2-dimensional, so that the n2 +1 matrices: I,A,A2, . . . , An

2
are linearly dependent).

Lemma 2.2.3. Let A ∈ Kn×n. Then there is a polynomial p ∈ K[x] such that p(A) = 0. In fact
we can choose p to have degree at most n2.

Same works for linear transformations of an n-dimensional K-vector space.

Examples 2.2.4. For example, we know (from the proof of the theorem above) that A =
(

2 1
1 1

)
must satisfy a polynomial equation of degree at most 4. In fact, it satisfies A2 − 3A+ I = 0. You
may also recall from the previous section that x2 − 3x + 1 is the characteristic polynomial of A.
That this is not just a coincidence is the subject of the Hamilton-Cayley Theorem. Before stating
and proving it, we develop some intuition about matrix polynomials.

Definition 2.2.5. A matrix polynomial over the field K is a matrix whose entries are polynomials
(in x say) with coefficients in the field K. It may be written as either

P (x) =

 p11(x) · · · p1n(x)
...

...
pm1(x) · · · pmn(x)


or as

P (x) = P0 + xP1 + x2P2 + · · ·+ xdPd

where Pj ∈ Km×n.

Examples 2.2.6. Here is an example.(
1 + x2 x
2x+ 1 1− x2

)
=
(

1 0
1 1

)
+ x

(
0 1
2 0

)
+ x2

(
1 0
0 −1

)
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Definition 2.2.7. If P is an m-by-m matrix polynomial written as

P (x) = P0 + xP1 + x2P2 + · · ·+ xdPd

and A ∈ Km×m then we may define P (A) to be the m-by-m matrix

P (A) = P0 +AP1 +A2P2 + · · ·+AdPd

In this case you have to be careful about multiplication. Note that (P + Q)(A) = P (A) + Q(A)
but that PQ(A) need not be equal to P (A)Q(A). For example, if P (x) = xB and Q(x) = xC
then PQ(x) = x2BC and so we have: P (A)Q(A) = ABAC while PQ(A) = A2BC. These are not
necessarily equal (if A and B do not commute).

Lemma 2.2.8. Let P (x) be a matrix polynomial of size n×n over the field K, and let A ∈ Kn×n.
Then P (A) = 0 if and only if there exists a matric polynomial Q(x) of size n×n over K such that

P (x) = (xI −A)Q(x)

Proof. This seems completely intuitive. The thing to be careful about is the fact that these matrix
polynomials do not have a commutative multiplication. We just have to remember the definition
of evaluation of a matrix polynomial at a n× n matric A given above.

Suppose that P (A) = 0. Then writing P (x) out as

P (x) = P0 + xP1 + · · ·+ xdPd

we get

P (x) = P (x)− 0 = P (x)− P (A)
= P0 + xP1 + · · ·+ xdPd − P0 −AP1 − · · · −AdPd
= (xI −A)P1 + (x2I −A2)P2 + · · ·+ (xdI −Ad)Pd
= (xI −A)Q(x)

since each (xjI −Aj) term can be written as

(xj−1I + xj−2A+ · · ·+ xAj−2 +Aj−1)

and so the (xI −A) can be completely factored out on the left.
Conversely, suppose that P (x) = (xI −A)Q(x) for some matrix polynomial

Q(x) = Q0 + xQ1 + · · ·+ xeQe .

Thus P (x) = xQ0 + x2Q1 + · · ·+ xe+1Qe −AQ0 − xAQ1 − · · · − xeAQe and so we get

P (A) = AQ0 +A2Q1 + · · ·+Ae+1Qe −AQ0 −AAQ1 − · · · −AeAQe = 0

as required. �
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Theorem 2.2.9 (Hamilton-Cayley). Let T be a linear transformation on a finite dimensional
vector space V . If f is the characteristic polynomial of T , then f(T ) = 0.

Proof. Let f ∈ K[x] be the characteristic polynomial of T . We have to show that f(T ) = 0 or
equivalently, that f(A) = 0 where A ∈ Kn×n is the matrix of T with respect to some basis for V .
Here n = dimK(V ). To do this let P (x) = diag(f(x), . . . , f(x)) be the n × n matrix polynomial
consisting of f(x)’s along the diagonal and zeros elsewhere. Note that P (x) = f(x)I so that
P (A) = f(A)I and so P (A) is zero precisely when f(A) is zero.

By the previous result, it suffices to find a polynomial matrix Q(x) such that

P (x) = (xI −A)Q(x)

But we already know this (from the section on determinants and inverses!), namely the ij-entry of
Q(x) is simply (−1)i+jdet ̂(xI −A)ji. Note the ij ji switch (accounts for the transpose in computing

inverses). Note that the entries of the (n − 1) × (n − 1) matrix ̂(xI −A)ji are all polynomials in
x of degree at most 1, and so the determinant is a polynomial in x of degree at most n− 1. Thus
Q(x) is clearly a matrix polynomial. �

So we have seen that linear transformations in L(V ) (and so square matrices) satisfy polynomial
equations. In particular, they are roots of their characteristic polynomials.

Now that we have found a good source of annihilating polynomials, we wish to develop a
structure theorem for linear transformations based on properties of their annihilating polynomials.
To do this, we need some definitions and results from polynomial algebra.

Definition 2.2.10. A polynomial p ∈ K[x] is reducible if there exists a factorization

p = p1p2

where pi ∈ K[x] are polynomials of strictly smaller degree than p. If no such factorization exists
then p is said to be irreducible. Note that irreducibility depends on the base field K (eg. x2 + 1 is
irreducible in R[x] but is reducible in C[x]).

A greatest common divisor (g.c.d.) of polynomials p1, . . . , pn ∈ K[x] is a polynomial p ∈ K[x]
of maximal degree which divides evenly into all of the pi. If the g.c.d. of the polynomials p1, . . . , pn
is 1 (or a scalar), then we say that the polynomials are relatively prime.

Theorem 2.2.11. Every poly p ∈ K[x] has a decomposition into irreducible factors p1 . . . pn. The
number n and the factors are uniquely determined (upto ordering and multiplication by non-zero
scalars).

If the g.c.d. of polynomials p1, . . . , pm is 1, then there exists polynomials q1, . . . , qm ∈ K[x] such
that

q1p1 + · · ·+ qmpm = l

Proof. We refer the reader to an abstract algebra book for the first part, and give a proof of the
second part here.

Let
S = {q1p1 + · · ·+ qmpm : qi ∈ K[x]}
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be the set of all linear combinations (with polynomial coefficients!) of the pi. Let d ∈ S have
minimal degree. Note that we can write

d = q1p1 + · · ·+ qmpm

We claim that d divides evenly into all the pi. If not, then we can divide some pi by d to get a
nonzero remainder r which necessarily has smaller degree than d. Say

pi = qd+ r

But we can rearrange this to get r = qd− pi and so r ∈ S. But this contradicts the minimality of
the degree of d.

So we have seen that d is a common divisor of all the pi. Since the g.c.d. of all the pi is 1, then
d must have degree 0. That is 0 6= d ∈ K. Replacing all the qi above by qi/d gives the desired
expression for the constant polynomial 1 as an element of S. �

Examples 2.2.12. Find polynomials qi (i = 1, 2, 3) such that

q1(x− 1)(x− 2) + q2(x− 2)(x− 3) + q3(x− 3)(x− 1) = 1

Hint: Thinking about Lagrange polynomials from Midterm II will help!

Now we are ready to state and prove the Primary Decomposition Theorem.

Definition 2.2.13. Let V be a K-vector space and let T ∈ L(V ). A subspace U ⊂ V is said to
be an T -invariant subspace if T (U) ⊂ U .

Theorem 2.2.14 (Primary Decomposition). Let V be a K-vector space, and let T ∈ L(V ).
Suppose that p ∈ K[x] is an annihilating polynomial for T which has a decomposition as

p = p1 · · · pk

where the pj are relatively prime. Then we have:

1. V = ker(p1(T ))⊕ · · · ⊕ ker(pk(T )), and each of these are T -invariant subspaces of V .

2. The projections πi : V → ker(pi(T )) is a polynomial in T .

3. If U ⊂ V is T -invariant, then

U = ⊕ki=1(U ∩ ker(pi(T )))

Proof. We begin with a few definitions and some notation. Define

p̂i =
k∏

j=1,j 6=i
pj

Note that, since the pi are relatively prime, the p̂i are relatively prime. Thus, there exist polynomials
qi ∈ K[x] such that

q1p̂1 + · · ·+ qkp̂k = 1

Now we are ready to establish the points of the theorem.
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• The ker(pi(T )) are T -invariant, since if v ∈ ker(pi(T )) then pi(T )Tv = Tpi(T )v = T0 = 0,
and so Tv ∈ ker(pi(T )) too.

• V is a sum of the ker(pi(T )). Note that

q1(T )p̂1(T ) + · · ·+ qk(T )p̂k(T ) = I

Thus, given any v ∈ V we can write

v = Iv =
k∑
i=1

qi(T )p̂i(T )v

All we have to do now is to verify that qi(T )p̂i(T )v ∈ ker(pi(T )). Well,

pi(T )qi(T )p̂i(T )v = qi(T )pi(T )p̂i(T )v = qi(T )p(T )v = qi(T )0 = 0

and we have shown V =
∑

i ker(pi(T )).

• Now we have to show that the sum above is a direct sum. This involves showing (recall
Midterm I) that the only element common to each ker(pi(T )) and the sum of the remaining
ker(pj(T ))’s is 0. Equivalently, (verify this!) one only has to see that

v1 + · · ·+ vk = 0

and vi ∈ ker(pi(T )) implies that vi = 0 for all i.

We see this by the following pretty argument. Apply
∑
qj(T )p̂j(T ) = I to vi to get

qi(T )p̂i(T )vi = Ivi = vi

The other qj(T )p̂j(T )vi terms on the left side vanish since vi ∈ ker(pi(T )) and pi is a factor
of p̂j when j 6= i.

Now use the equation v1 + · · ·+ vk = 0 to substitute in for vi as follows.

vi = qi(T )p̂i(T )vi = qi(T )p̂i(T )

−∑
s 6=i

vs


But this gives

vi = −
∑
s 6=i

qi(T )p̂i(T )vs = −
∑
s 6=i

qi(T )0 = −
∑
s6=i

0 = 0

since (as above) p̂i(T )vs = 0 whenever i 6= s. Therefore we have shown vi = 0, and so the
sum is direct. At this stage we have established point 1.

• 2 will follow once we convince ourselves that Im(qi(T )p̂i(T )) is the same as ker(pi(T ))
(since qi(T )p̂i(T ) is a polynomial in T ). We have clearly seen above that Im(qi(T )p̂i(T )) ⊂
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ker(pi(T )). We have also seen the reverse inclusion (where??) implicitly, but let’s make it
explicit here. If vi ∈ ker(pi(T )) then

vi = Ivi =
∑
j

qj(T )p̂j(T )vi

But we remember that if i 6= j then p̂j(T )vi = 0, and so the sum on the right hand side
reduces down to qi(T )p̂i(T )vi. That is

vi = qi(T )p̂i(T )vi

and so vi ∈ Im(qi(T )p̂i(T )).

• Finally for 3, suppose that U is T -invariant. This means if u ∈ U , then Tu ∈ U , and more
generally f(T )u ∈ U for any polynomial f ∈ K[x]. By part 1 we have seen that each vector
u ∈ U ⊂ V can be expressed as a sum u1 + · · ·+ uk where each ui ∈ ker(pi(T )). By part 2,
ui can be expressed as a polynomial in T times u, and so also belongs to U by T -invariance.
Done!

�

Examples 2.2.15. Let’s look at our motivating examples (class notes!) again. These are the
projection operators. They satisfy T 2 = T , or in other words T (T − I) = 0. The Primary Decom-
position Theorem tells us that the finite dimensional vector space V on which T acts decomposes
as a sum

V = V0 ⊕ V1 = ker(T )⊕ ker(T − I)

of 0- and 1-eigenspaces of T . Note that since

1 = 1(x)− 1(x− 1)

we have that IT = T is the projection onto the 1-eigenspace, and that −I(T − I) = (I − T ) is the
projection onto the 0-eigenspace. Thus the 1-eigenspace is the image of T and is also the kernel of
(T − I), while the 0-eigenspace is the kernel of T and is the image of (I − T ).

Here is another example. Suppose that T 2 = I. Then (T − I)(T + I) = 0 and so Primary
Decomposition tells us that V is a sum of the 1- and the −1-eigenspaces of T . There are three
cases.

Case 1. The 1-eigenspace is all of V . Then T = I.

Case 2. The −1-eigenspace is all of V . Then T = −I is a central symmetry through the origin.

Case 3. Both the 1- and the −1-eigenspaces are nonzero. Then T is a reflection in the 1-
eigenspace.

In view of the Primary Decomposition Theorem it makes good sense to look for the simplest
possible polynomials (eg of lowest degree) which annihilate T . This motivates the following.
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Definition 2.2.16. Let V be a finite dimensional K-vector space and let T ∈ L(V ). The minimal
polynomial of T is the unique monic (leading coefficient = 1) polynomial of minimal degree which
annihilates T .

The next result says that this concept is indeed well-defined, and it establishes a nice relationship
between the minimal polynomial and the characteristic polynomial.

Lemma 2.2.17. Let m be an annihilating polynomial of T which has minimal degree. Then

1. m divides evenly into every other annihilating polynomial of T . In particular, m divides
evenly into the characteristic polynomial of T . Also, the notion of minimal polynomial is
well-defined.

2. The minimal polynomial of T and the characteristic polynomial of T have the same roots.

Proof. Let f be an annihilating polynomial for T . If m does not divide evenly into f we can find
a polynomial q and a nonzero polynomial r such that

f = mq + r

Moreover, the degree of r is strictly less than that of m. But r(T ) = f(T ) −m(T )q(T ) = 0 and
so r is an annihilating polynomial of T which has strictly smaller degree than m. This contradicts
the minimality of the degree of m.

This has two neat consequences. The first is that m divides the characteristic polynomial of T ,
since the characteristic polynomial annihilates T by Hamilton-Cayley. The second consequence is
the uniqueness of the minimal polynomial. If m and m′ are two annihilating polynomials of T with
minimal degree, then m divides m′ and m′ divides m by the argument above. Thus, m and m′ can
only differ by at most a scalar multiple. Therefore we can uniquely define the minimal polynomial
by deciding how to choose a scalar multiple. We do this by requiring that the leading coefficient of
m should be 1 (m is called monic).

Now for part two. We’ve seen in part one that the minimal poly divides the char poly. Thus
every root of the minimal poly is automatically a root of the char poly. So we have only to prove
the reverse implication.

Suppose λ ∈ K is a root of the char poly. Thus, λ is an eigenvalue of T . That is, there exists a
nonzero vector v ∈ V such that Tv = λv. Thus T jv = λjv and, more generally,

m(T )v = m(λ)v

where m is the minimal poly. But m(T ) = 0 and v 6= 0. Thus we must have m(λ) = 0, and so λ is
a root of m. �

Remark 2.2.18. Here is a direct proof of the fact that m(k) = 0 implies that k is an eigenvalue
of T (and hence is a root of the char poly). Since k is a root of m we can write

m(x) = (x− k)q(x)
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where q has degree strictly less that the degree of m. By definition of minimal polynomial, this
means that q cannot annihilate T . Thus there exists a nonzero vector w ∈ V such that q(T )w 6= 0.
But

(T − kI)q(T )w = m(T )w = 0

and so k is indeed an eigenvalue of T with eigenvector q(T )w. �

Here is the characterization of diagonalizable operators as promised earlier.

Theorem 2.2.19 (Characterization of diagonalizable). Let V be a finite dimensional K-vector
space and let T ∈ L(V ). Then T is diagonalizable if and only if the minimal polynomial of T is a
product of distinct linear factors.

Proof. Suppose T is diagonalizable. This means that there is a basis for V with respect to which
the matrix of T is diagonal, with (repeated) eigenvalues along the diagonal. Thus the char poly is
of the form ∏

j

(x− λj)dj

where the j index runs over the set of distinct eigenvalues of T , and the dj are the number of times
the λj appears on the diagonal of A which is the same as the dimension of the λj-eigenspace of T .
It is clear (do the matrix multiplication!) that A satisfies the polynomial∏

j

(x− λj)

where the j index is as above, but that it wont satisfy a polynomial of the form above which omits
one of the j indices. This must be the minimal poly of T , since the minimal poly is the monic poly
of minimal degree which divides the char poly.

Conversely, Suppose the minimal poly of T is a product∏
j

(x− λj)

where the λj are all distinct. The Primary Decomposition Theorem tells us that V is a direct sum
of the ker(T − λjI). But each of these is a λj-eigenspace of T . Picking bases for each of these
direct summands gives a basis of eigenvectors of T for V . Thus T is diagonalizable. �

Finally, here’s a result about simultaneous diagonalization.

Theorem 2.2.20 (Simultaneous diagonalization). Let V be a finite dimensional K-vector space,
and let S, T ∈ L(V ) be diagonalizable. Then S and T are simultaneously diagonalizable if and only
if ST = TS.

Proof. Suppose S and T are simultaneously diagonalizable. This means there exists a basis B for V
with respect to which S has matrix A = diag(λ1, . . . , λn) and T has matrix B = diag(µ1, . . . , µn).
Now

AB =

 λ1µ1 0
. . .

0 λnµn

 =

 µ1λ1 0
. . .

0 µnλn

 = BA
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and so ST = TS.
On the other hand, suppose that S and T are diagonalizable, and that ST = TS. Since S is

diagonalizable, we may write
V = V1 ⊕ · · · ⊕ Vk

where the Vi are eigenspaces of S. Since ST = TS, each of the Vi are T -invariant. Here’s the proof:
v ∈ Vi implies

S(Tv) = T (Sv) = T (λiv) = λiTv

and so Tv ∈ Vi.
Now T diagonalizable implies that

V = W1 ⊕ · · · ⊕Wl

where each Wi is an eigenspace of T , and the decomposition corresponds to a decomposition of the
minimal polynomial for T into linear factors as shown

(x− µ1) · · · (x− µl) .

Now, since each Vi is T -invariant, the last part of the Primary Decomposition Theorem states that

Vi =
l⊕

j=1

(Vi ∩Wj) .

Thus

V =
k⊕
i=1

l⊕
j=1

(Vi ∩Wj)

is a direct sum of intersections of eigenspaces of S and T . Choosing bases for each of the Vi ∩Wj

and combining these together yields a basis for V which consists of simultaneous eigenvectors of S
and of T . �
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2.3 Jordan and Rational Canonical Forms

In this section we address two problems that may prevent a linear operator from being diagonal-
izable. First, even though the characteristic polynomial may factor into a product of linear terms,
the minimal polynomial may have some repeated roots. Thus the operator is not diagonalizable,
and so does not have a diagonal matrix representative. The next best thing to a diagonal matrix
is the so-called Jordan Form matrix. This is a lower-triangular matrix, consisting of eigenvalues on
the main diagonal, 1’s and 0’s just below the diagonal, and 0’s elsewhere. Secondly, the character-
istic polynomial may not even factor into linear terms over the field of scalars K, and the minimal
polynomial may have some high degree irreducible factors. In this case we can obtain a canonical
matrix representation for the operator called the Rational Form.

Throughout this section K is a field, V is a finite dimensional K-vector space, and T ∈ L(V ).
We begin with the case where the characteristic polynomial of T factors into linear terms, but T
is not diagonalizable. Before stating the existence result for the Jordan Canonical Form, we need
a definition.

Definition 2.3.1. Let λ ∈ K be a scalar. A Jordan block of size m is an m×m matrix in Km×m

of the form

J(λ) =


λ 0
1 λ

. . . . . .
0 1 λ


with λ’s on the diagonal, 1’s just below the diagonal and 0’s elsewhere.

Examples 2.3.2. Here are some examples.

1. A Jordan block J(λ) of size 1 is just the following:

(λ)

2. Here is a Jordan block J(3) of size 2: (
3 0
1 3

)
3. Here is a Jordan block J(5) of size 3:  5 0 0

1 5 0
0 1 5


Remark 2.3.3. Note that if J(λ) is a Jordan block of size m then J(λ) − λIm is a nilpotent
operator (whose m-th power is 0, but whose (m− 1)-st power is non-zero).

Theorem 2.3.4 (Jordan Forms: Existence). Let K be a field and let V be a finite dimensional
K-vector space. Let T ∈ L(V ). Then the following are equivalent.
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1. the characteristic polynomial, p, of T factors into linear terms

p(x) =
k∏
i=1

(x− λi)di

2. V decomposes as a direct sum V λ1 ⊕ · · · ⊕ V λk where

V λi = ker(T − λiI)di

3. There is a basis for V with respect to which T has a block-diagonal matrix representation as
shown:  J(λ1) 0

. . .
0 J(λk)


where for each eigenvalue λi there may be several Jordan blocks J(λi) of various sizes all
along the diagonal.

4. There is a basis of V with respect to which T has a lower-triangular matrix as shown: ∗ 0
. . .

∗ ∗



The matrix representation in part 3 above is called the Jordan canonical form of T . We abbreviate
this to JCF.

Examples 2.3.5. Here are some examples of JCF matrices.

1. The form  3 0 0
0 3 0
0 1 3


has one Jordan block of size 1 and one of size 2. The char poly is

(x− 3)3

and the minimal poly is
(x− 3)2

The dimension of the 3-eigenspace is 2. This is not diagonalizable.

2. The form  3 0 0
0 3 0
0 0 3


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has 3 Jordan blocks of size 1. The char poly is

(x− 3)3

and the minimal poly is
(x− 3)

The dimension of the 3-eigenspace is 3. This is diagonalizable.

3. The form  3 0 0
1 3 0
0 1 3


has 1 Jordan block of size 3. The char poly is

(x− 3)3

and the minimal poly is
(x− 3)3

The dimension of the 3-eigenspace is 1. This is not diagonalizable.

4. The form 
3 0 0 0
1 3 0 0
0 0 7 0
0 0 1 7


has 1 J(3)-block of size 2 and 1 J(7) block of size 2. The char poly is

(x− 3)2(x− 7)2

and the minimal poly is
(x− 3)2(x− 7)2

Each of the 7- and 3-eigenspaces are 1-dimensional. This is not diagonalizable.

5. The form 
3 0 0 0
1 3 0 0
0 0 7 0
0 0 0 7


has 1 J(3)-block of size 2 and 2 J(7) blocks of size 1. The char poly is

(x− 3)2(x− 7)2

and the minimal poly is
(x− 3)2(x− 7)

The 3-eigenspace is 1-dimensional, while the 7-eigenspace is 2-dimensional. This is not diag-
onalizable.
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6. The form 
3 0 0 0
0 3 0 0
0 0 7 0
0 0 0 7


has 2 J(3)-blocks of size 1 and 2 J(7)-blocks of size 1. The char poly is

(x− 3)2(x− 7)2

and the minimal poly is
(x− 3)(x− 7)

Each of the 7- and 3-eigenspaces are 2-dimensional. This is diagonalizable.

Here’s a corollary of the JCF theorem.

Definition 2.3.6. Say that an operator T ∈ L(V ) is triangulable if there exists a basis for V with
respect to which the matrix of T is (lower) triangular.

Corollary 2.3.7 (Triangulable operators). Let V be a finite dimensional K-vector space. An
operator T ∈ L(V ) is triangulable if and only if its characteristic polynomial factors as a product of
linear terms. In particular, if the field K is algebraically closed, then every T ∈ L(V ) is triangulable.

The JCF matrix is uniquely determined by the operator T (at least upto ordering of the J(λ) along
the diagonal) as the next result states.

Theorem 2.3.8 (Jordan Forms: Uniqueness). Suppose K is a field and V is a finite dimen-
sional K-vector space. Suppose also that T ∈ L(V ) has a Jordan form matrix representative. Then
the number and size of the Jordan blocks in this representative are determined by T . Specifically
we have:

1. The types J(λ) of the Jordan blocks are determined by the characteristic polynomial of T .
The λ are precisely the roots of this polynomial.

2. The number of Jordan blocks of type J(λ) of size m is equal to

rank((T − λI)m−1) + rank((T − λI)m+1)− 2rank((T − λI)m)

So, the operator T uniquely determines the number, type and size of its Jordan blocks. That is, T
uniquely determines its JCF upto the order in which the Jordan blocks appear along the diagonal.

The next result records some obvious connections between the Jordan canonical form of T and
properties of T .

Theorem 2.3.9. Let V be a finite dimensional K-vector space, and let T ∈ L(V ) have a char-
acteristic polynomial which factors into linear terms over K. Then the following are true for an
eigenvalue λ of T .

1. The number of Jordan blocks of type J(λ) equals the dimension of the λ-eigenspace of T .
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2. The size of the largest Jordan block of type J(λ) equals the multiplicity of λ as a root of the
minimal polynomial.

3. The total number of occurrences of λ in the JCF of T equals the multiplicity of λ as a root of
the characteristic polynomial of T .

If the characteristic polynomial of an operator T ∈ L(V ) does not factor over the field K into a
product of linear terms (for example, x2 + 1 over the field of real numbers) then we can still obtain
a useful canonical matrix form for T called the Rational Canonical Form. The idea is to use the
polynomial to determine the matrix as follows.

Talk about this at a later date.
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Chapter 3

Inner Product Spaces

Recall from Calculus III or from Math 3333 that you can compute the angle between two vectors
u = (u1, . . . , un) and v = (v1, . . . , vn) in R

n using the law of cosines as follows.
Start by observing that u, v and u− v are the sides of a triangle in R

n. The law of cosines tells
us that

||u− v||2 = ||u||2 + ||v||2 − 2||u||||v|| cos θ

where θ is the angle between u and v. We use the Pythagorean formula for the length of a vector
in R

n, and so get

(u1−v1)2+· · ·+(un−vn)2 = (u2
1+· · ·+u2

n)+(v2
1+· · ·+v2

n)−2
√

(u2
1 + · · ·+ u2

n)
√

(v2
1 + · · ·+ v2

n) cos θ

Squaring out the terms on the LHS, and simplifying gives us

−2(u1v1 + · · ·+ unvn) = −2||u||||v|| cos θ

or
cos θ =

(u1v1 + · · ·+ unvn)
||u||||v||

So we see that the term in the numerator is very useful because

• It is easy to compute.

• It has a cool geometric interpretation: ||u||||v|| cos θ.

It is called the dot product of the vectors u and v, and is often denoted by u ·v. Some cool properties
that it enjoys include:

• u · v = v · u for all vectors u and v.

• (ku) · v = k(u · v) for all vectors u and v and all real numbers k.

• (u+ v) · w = u · w + v · w for all vectors u, v and w.

• u · u = ||u||2 ≥ 0 and equals 0 if and only if u = 0.

We take this as our starting point for defining a real inner product on a real vector space and,
by analogy, a hermitian product on a complex vector space.
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3.1 Inner Product Spaces

Definition 3.1.1. Let V be a real vector space. A real inner product on V is a function

〈 , 〉 : V × V → R : (v, w) 7→ 〈v, w〉

which satisfies

(i) 〈u, v〉 = 〈v, u〉 for all u, v ∈ V

(ii) 〈ku, v〉 = k〈u, v〉 for all u, v ∈ V and all k ∈ R.

(iii) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 for all u, v, w ∈ V .

(iv) 〈v, v〉 ≥ 0, and 〈v, v〉 = 0 if and only if v = 0, for all v ∈ V .

Definition 3.1.2. Let V be a complex vector space, and let z denote the complex conjugate of
z ∈ C. A hermitian product on V is a function

〈 , 〉 : V × V → C : (v, w) 7→ 〈v, w〉

which satisfies

(i) 〈u, v〉 = 〈v, u〉 for all u, v ∈ V

(ii) 〈ku, v〉 = k〈u, v〉 for all u, v ∈ V and all k ∈ C.

(iii) 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 for all u, v, w ∈ V .

(iv) 〈v, v〉 ≥ 0, and 〈v, v〉 = 0 if and only if v = 0, for all v ∈ V .

Examples 3.1.3. Here are some examples of real and complex inner product spaces. Verify that
they are indeed so.

1. The usual dot product on R
n

2. The hermitian product on C
n, defined by

〈(z1, . . . , zn), (w1, . . . , wn)〉 =
n∑
i=1

ziwi

3. Let C([a, b],C) (respectively C([a, b],R)) denote the complex (respectively real) vector space
of continuous complex-valued (respectively real-valued) functions on the interval [a, b]. Then

〈f, g〉 =
∫ b

a
f(x)g(x) dx

is a hermitian product (respectively real inner product).

4. 〈(x, y, z), (a, b, c)〉 = xa+ 5yb+ 3zc− 2(xb+ ya) is a real inner product on R
3!!
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Definition 3.1.4. Let V be a real or complex inner product space. We say that u, v ∈ V are
orthogonal if 〈u, v〉 = 0.

Lemma 3.1.5. If v1, . . . , vn are non-zero mutually orthogonal vectors in a real (or complex) inner
product space V , then they are linearly independent.

Proof. Exercise. �

The following definitions are direct generalizations of the Calc III definitions.

Definition 3.1.6. Define the length of norm of v ∈ V a real (or complex) inner product space to
be

||v|| =
√
〈v, v〉

Definition 3.1.7. Define the angle between two vectors v, w ∈ V a real inner product space to be

cos θ =
〈v, w〉
||u||||v||

Definition 3.1.8. Let u and v be vectors in a real or complex inner product space V . The
projection of u on v is denoted by projv(u) and is defined as

projv(u) =
〈u, v〉
〈v, v〉

v

Lemma 3.1.9. Let u, v ∈ V be vectors in a real or complex inner product space, then v and
u− projv(u) are orthogonal.

Proof. Exercise. �

Theorem 3.1.10 (Cauchy-Schwarz Inequality). Let (V, 〈 , 〉) be a real or complex inner prod-
uct space. For all u, v ∈ V we have

|〈u, v〉|2 ≤ ||u||2|v||2

In the real case, the equality
〈u, v〉 = ||u|||v||

holds if and only if u = kv for some k ≥ 0.

Proof. Note that the equality holds if v = 0. So suppose that v 6= 0. Then the vector projv(u) is
well-defined and we can say

0 ≤ 〈u− projv(u), u− projv(u)〉
= 〈u, u〉 − 〈u, projv(u)〉

= 〈u, u〉 − 〈u, 〈u, v〉
〈v, v〉

v〉

= 〈u, u〉 − 〈u, v〉
〈v, v〉

〈u, v〉

= 〈u, u〉 − |〈u, v〉|
2

〈v, v〉

45



Rearranging (remembering that ||u||2 = 〈u, u〉 and ||v||2 = 〈v, v〉) gives the desired result.
In the real case, if u = kv for some k ≥ 0 then we have

〈u, v〉 = 〈kv, v〉 = k〈v, v〉 = k||v||||v|| = ||u||||v||

and so equality holds. Conversely, if equality holds, then we see that (from the proof) u−projv(u) =
0 and so u = projv(u) is indeed a multiple of v. If u = kv where k < 0 then

〈u, v〉 = 〈kv, v〉 = k||v||2 < 0 ≤ ||u||||v‖|

and so equality would not hold. Therefore u must be a positive multiple of v. �

Remark 3.1.11. Note that the C-S inequality is not trivial to prove in the special cases of R
n, C

n

and C([a, b],C) with the standard inner products defined above. So you should definitely appreciate
the generality, beauty and simplicity of the proof given above. Here are the three versions of C-S.

• (
∑n

i=1 xiyi)
2 =

(∑n
i=1 x

2
i

) (∑n
i=1 y

2
i

)
for xi, yi ∈ R.

• (
∑n

i=1 xiyi)
2 =

(∑n
i=1 |xi|2

) (∑n
i=1 |yi|2

)
for xi, yi ∈ C.

•
(∫ b

a f(x)g(x) dx
)2

=
(∫ b

a |f(x)|2 dx
)(∫ b

a |g(x)|2 dx
)

Theorem 3.1.12. Let (V, 〈 , 〉) be a real or complex inner product space. Then || || : V → R : v 7→√
〈v, v〉 is a norm on V . That is it satisfies the following properties:

1. ||v|| ≥ 0 for all v ∈ V , and equality holds if and only if v = 0.

2. ||kv|| = |k|||v|| for all k ∈ R (or C) and all v ∈ V .

3. ||v + w|| ≤ ||v||+ ||w|| for all v, w ∈ V .

Proof. Clearly, ||v|| ≥ 0. Now ||v|| = 0 if and only if 〈v, v〉 = 0 and this is true if and only if v = 0
by definition of inner product (positive definiteness).

For k ∈ C and v ∈ V we have

||kv|| =
√
〈kv, kv〉 =

√
kk〈v, v〉 =

√
|k|2||v||2 = |k|||v|| .

Finally, for v, w ∈ V we have

||v + w||2 = 〈v + w, v + w〉
= 〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉
= ||v||2 + 〈v, w〉+ 〈w, v〉+ ||w||2

= ||v||2 + 2Re(〈v, w〉) + ||w||2

≤ ||v||2 + 2|〈v, w〉|+ ||w||2

≤ ||v||2 + 2||v||||w||+ ||w||2

= (||v||+ ||w||)2

where the last inequality follows from Cauchy-Schwarz. This proves the triangle inequality, and
the theorem. �
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Definition 3.1.13. Let V be an inner product space. A basis {v1, . . . , vn} for V is said to be
orthogonal if

〈vi, vj〉 = 0 whenever i 6= j

and is said to be orthonormal if
〈vi, vj〉 = δij

Examples 3.1.14. Standard basis on R
n is orthonormal.

Theorem 3.1.15 (Gram-Schmidt). A finite dimensional inner product space has an orthonor-
mal basis.

Proof. See Math 3333 for the usual G-S orthonormalization process. Start from an arbitrary basis
{v1, . . . , vn} and define

u1 =
v1
||v1||

and, inductively,

uj =
vj −

∑j−1
i=1 projui(vj)

||vj −
∑j−1

i=1 projui(vj)||
�

Examples 3.1.16. There are many instances of this in the literature.

1. Let V be the subspace of C([−1, 1],C) spanned by the polynomials {1, x, x2, . . . , xn}, and
equipped with the inner product

〈f, g〉 =
∫ 1

−1
f(x)g(x) dx

Then the G-S process applied to the ordered basis {1, x, x2, . . . , xn} produces an orthonormal
basis of polynomials called Legendre polynomials. Compute them!

2. Let W be the subspace of C([−π, π],C) spanned by {eikx | − n ≤ k ≤ n} and equipped with
the inner product

〈f, g〉 =
1

2π

∫ π

−π
f(x)g(x) dx

Then {eikx | − n ≤ k ≤ n} is an orthonormal basis for W . If f ∈ C([−π, π],C) then the
orthogonal projection of f onto W is given by

n∑
k=−n

cke
ikx

where the coefficients ck =
∫ π
−π f(x)eikx dx are called the Fourier coefficients of f .

The second example above generalizes. First we give a definition.
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Definition 3.1.17. Let V be an inner product space, and let S ⊂ V . The orthogonal complement
of S in V is denoted by S⊥ and is defined as

S⊥ = {v ∈ V | 〈v, s〉 = 0 for all s ∈ S }

If W ⊂ V is a finite dimensional subspace, then the orthogonal projection PrW is the unique linear
operator in L(V ) such that

PrW (w) = w for all w ∈W ,

and
PrW (v) = 0 for all v ∈W⊥.

Lemma 3.1.18. Let V and W be as in the definition above. Then there exists a unique projection
operator as asserted in the definition. Moreover, if {v1, . . . , vk} is an orthonormal basis for W ,
then PrW is given by

PrW (v) = 〈v, v1〉v1 + · · ·+ 〈v, vk〉vk

Proof. PrW (as defined above) is clearly linear, and clearly acts as the identity on W and as the
zero transformation on W⊥. So we see that projection operators exist.

Now for uniqueness. Let T ∈ L(V ) be such that T |W = IW and T |W⊥ = 0. Given any v ∈ V
we can write

v = w + (v − w) ∈ W +W⊥

where w = PrW (v). Thus (by linearity of T ) we get

T (v) = T (w) + T (v − w) = w + 0 = w = PrW (v)

and we’re done. �

Remark 3.1.19. The Least Squares Approximation technique of Math 3333 may be neatly phrased
in terms of orthogonal complements and projection operators. Recall the setup. Suppose that the
system

Ax = b

where A ∈ C
m×n, x ∈ C

n×1, and b ∈ C
m×1, does not have a solution. This means that b 6∈

Im(A) = Col(A). So we find the nearest (or orthogonal) projection of b onto Im(A) and solve for
that! This is called the least squares solution of the system Ax = b. It’s not actually a solution,
but it’s the next best thing!

Here’s a trick for finding the least squares solution. It relies on the following observation:

Im(A)⊥ = ker(AT )

Now v is a lest squares solution if and only if Av = PrIm(A)b. That is, if and only if Av−b ∈ Im(A)⊥.
Now Av − b ∈ Im(A)⊥ if and only if AT (Av − b) = 0 and this is true if and only if v is a solution
of the consistent system

ATAx = AT b

So that’s it. Simply multiply your inconsistent (no solutions) equation Ax = b across by AT on the
left, and solve the resulting consistent system.
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3.2 Diagonalization and Spectral Theorem

Definition 3.2.1. There are special names given to the change of basis matrices between orthonor-
mal bases in inner product spaces.

1. A ∈ R
n×n is said to be orthogonal if

ATA = In

That is, A is invertible and A−1 = AT .

2. A ∈ C
n×n is said to be unitary if

A
T
A = In

That is, A is invertible and A−1 = A
T . We usually denote AT by A∗.

It is easy to see that A is orthogonal (resp. unitary) if and only if its rows (and likewise its columns)
form an orthonormal basis for R

n with the usual dot product (resp. C
n with the usual hermitian

product).

Definition 3.2.2. Let V and W be inner product spaces (either both real or both complex). We
say that

T : V →W

is an isometry if

• T is an isomorphism of vector spaces

• 〈Tu, Tv〉 = 〈u, v〉 for all u, v ∈ V .

Lemma 3.2.3. Let T : V → W be a linear transformation of finite dimensional inner product
spaces. Then the following are equivalent.

1. T is an isometry

2. For any orthonormal basis {u1, . . . , un} for V , the set {Tu1, . . . , Tun} is an orthonormal
basis for W .

3. There exists an orthonormal basis {u1, . . . , un} for V , such that the set {Tu1, . . . , Tun} is
an orthonormal basis for W .

Proof. 1 → 2 is immediate, as is 2 → 3 (just use G-S to obtain an orthonormal basis for V and
then apply 2). The work is in proving 3→ 1.

Given any u, v ∈ V then we can write

u = α1u1 + · · ·+ αnun

and
v = β1u1 + · · ·+ βnun
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where {u1, . . . , un} is our given orthonormal basis for V with the property that {Tu1, . . . , Tun} is
an orthonormal basis for W . Then we have

〈Tu, Tv〉 = 〈T (α1u1 + · · ·+ αnun), T (β1u1 + · · ·+ βnun)〉
= 〈

∑
i

αiTui,
∑
j

βjTuj〉

=
∑
ij

αiβj〈Tui, T vj〉

=
∑
ij

αiβjδij

=
∑
i,j

αiβj〈ui, vj〉

= 〈
∑
i

αiui,
∑
j

βjuj〉

= 〈u, v〉

and so we see that T is indeed an isometry. �

Corollary 3.2.4. These are all immediate corollaries.

1. T ∈ L(Rn) is an isometry with respect to the usual dot product if and only if its standard
basis matrix representation [T ]St is orthogonal.

2. T ∈ L(Cn) is an isometry with respect to the usual hermitian product if and only if its standard
basis matrix representation [T ]St is unitary.

3. Two finite dimensional real inner product spaces are isometric if and only if they have the
same dimension.

4. Two finite dimensional complex inner product spaces are isometric if and only if they have
the same dimension.

As promised we shall go after a diagonalization theorem. First of all we say what it means for
an operator T ∈ L(V ) on an inner product space to interact nicely with the inner product. We
shall do this by first talking about the adjoint of an operator T ∈ L(V ) on an inner product space.

Definition 3.2.5. Let T ∈ L(V ) be an operator on an inner product space. The adjoint of T is
an operator in L(V ), denoted by T ∗, which is defined by

〈T (u), v〉 = 〈u, T ∗(v)〉

for all u, v ∈ V .

Lemma 3.2.6. The notion given above of the adjoint of an operator T on an inner product space
V is well-defined. Moreover, if T has matrix representative A with respect to some orthonormal
basis for V , then T ∗ has the matrix representative A∗ with respect to the same basis.
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Proof. Let’s show linearity of T ∗. If v1, v2 ∈ V then we have

〈u, T ∗(v1 + v2)〉 = 〈T (u), v1 + v2〉
= 〈T (u), v1〉 + 〈T (u), v2〉
= 〈u, T ∗(v1)〉 + 〈u, T ∗(v2)〉
= 〈u, T ∗(v1) + T ∗(v2)〉

holding for all u ∈ V . In particular, this holds for all u in some orthonormal basis B for V .
This means that the coefficients of T ∗(v1 + v2) with respect to B all agree with the coefficients of
T ∗(v1) + T ∗(v2) with respect to B, since we’ve just shown that the complex conjugates of these
coefficients agree. Thus

T ∗(v1 + v2) = T ∗(v1) + T ∗(v2)

and so T ∗ respects addition. Likewise (exercise) you can show that T ∗ respects scalar multiplication.
Thus, T ∗ is linear.

Finally, let B = {ui} be an orthonormal basis for V . Suppose that the matrix of T w.r.t. B is
A. This means

Aij = 〈T (uj), ui〉

(why not 〈ui, T (uj)〉?) and so if B is the matrix for T ∗ we have

Bij = 〈T ∗(uj), ui〉 = 〈ui, T ∗(uj)〉 = 〈T (ui), uj〉 = Aji

and so B = A∗ as required. �

Definition 3.2.7. • Say that a linear operator T : V → V of a real or complex inner product
space is self-adjoint if

〈Tu, v〉 = 〈u, Tv〉

for all u, v ∈ V . By the previous lemma/definition, this is just the same as saying that T is
equal to its own adjoint.

• Say that a matrix A ∈ Kn×n (K = R or C) is self-adjoint if

A∗ = A

In the real case this becomes AT = A and we call the matrix symmetric, and in the complex
case this is still A∗ = A and we call the matrix hermitian.

Remark 3.2.8. Note that an operator T is self-adjoint if and only if its matrix w.r.t. an orthonor-
mal basis is a self-adjoint matrix.

Here’s our first cool theorem.

Theorem 3.2.9. Every self-adjoint operator T ∈ L(V ) on a finite dimensional inner product space
V has a real eigenvalue. In fact, all eigenvalues of T are real. Moreover, eigenspaces with distinct
eigenvalues are orthogonal.
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Proof. Since finite dimensional inner product spaces of the same dimension are isometric, it suffices
to consider a self-adjoint operator on some C

n or R
n.

Given a self-adjoint operator T on R
n we can consider it as a self-adjoint operator on C

n. In
this case we know that the characteristic polynomial of T factors as a product of linear terms. Thus
there are eigenvalues. We just have to show that they all must be real.

Let λ ∈ C be an eigenvalue of T with nonzero eigenvector v. Then we have

λ〈v, v〉 = 〈λv, v〉
= 〈T (v), v〉
= 〈v, T ∗(v)〉
= 〈v, T (v)〉
= 〈v, λv〉
= λ〈v, v〉

Now, v 6= 0 implies that 〈v, v〉 6= 0 (positive definiteness), and so λ = λ. Thus λ ∈ R and we’re
done.

Finally, if u and v are eigenvectors of T corresponding to distinct eigenvalues λ and µ respec-
tively, then we have

λ〈u, v〉 = 〈λu, v〉 = 〈T (u), v〉 = 〈u, T (v)〉 = 〈u, µv〉 = µ〈u, v〉

Thus (λ− µ)〈u, v〉 = 0 and, since λ 6= µ, we get 〈u, v〉 = 0. Done! �

Examples 3.2.10. Note that the assumption of finite dimensionality is crucial here. For example
the multiplication by x operator

M : C([a, b],C)→ C([a, b],C) : f 7→M(f)

where M(f)(x) = xf(x) for all x ∈ [a, b], is clearly self-adjoint with respect to the usual inner
product

〈f, g〉 =
∫ b

a
f(x)g(x) dx

but does not have any eigenvalues.

Now we’re ready for our main diagonalization theorem. It is one form of the spectral theorem.

Theorem 3.2.11 (Spectral Theorem I). Let T ∈ L(V ) be a self-adjoint operator on a finite
dimensional inner product space. Then V has an orthonormal basis of eigenvectors of T with real
eigenvalues.

Corollary 3.2.12. If A ∈ R
n×n is symmetric, then there exists an orthogonal matrix P such that

PAP−1 = PAP T is diagonal.
If A ∈ C

n×n is hermitian, then there exists a unitary matrix U such that UAU−1 = UAU∗ is
diagonal with real entries.
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Proof of Theorem. Proof is by induction on n = dimK(V ). The case n = 1 is trivial. Suppose
theorem holds for self-adjoint operator on inner product spaces of dimension n− 1, and let V have
dimension n.

Now we know T has a non-zero eigenvector u with real eigenvalue λ. Let W be the one-
dimensional space spanned by u and let W⊥ be its (n− 1)-dimensional orthogonal complement. If
v ∈W⊥, then we have

〈u, T (v)〉 = 〈T (u), v〉 = 〈λu, v〉 = λ〈u, v〉 = λ0 = 0

and so T (v) ∈ W⊥. Thus the operator T restricts to W⊥ to give a self-adjoint operator on an
(n − 1)-dimensional inner product space. By the inductive hypothesis we know that W⊥ has an
orthonormal basis of eigenvectors of T |W⊥ with real eigenvalues. Adding in the vector u

||u|| gives an
orthonormal basis for V which is comprised of eigenvectors of T with real eigenvalues. Done. �

Here’s the more standard statement of the Spectral Theorem (for self-adjoint operators).

Theorem 3.2.13 (Spectral Theorem). Let T ∈ L(V ) be a self-adjoint operator on an inner
product space V . Then there exist mutually orthogonal subspaces W1, . . . ,Wk of V together with
real numbers λ1, . . . , λk such that

T =
∑
i

λiPrWi

and
I =

∑
i

PrWi

Proof. Let the λi be the eigenvalues of T , and let the Wi be the corresponding eigenspaces. �

Remark 3.2.14. If you are just interested in diagonalization of operators on inner product spaces,
and do not require that the eigenvalues be real, then we see that a necessary condition for diago-
nalization is that T should commute with its adjoint T ∗. In fact, this is also a sufficient condition
for diagonalization of T . We call an operator T which satisfies this condition

TT ∗ = T ∗T

a normal operator. The more general form of the Spectral theorem then reads as follows.

Theorem 3.2.15. Let T be a normal operator on a finite dimensional complex inner products
space, or a self-adjoint operator on a finite dimensional real inner product space. Then V has an
orthonormal basis of eigenvectors of T .
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Chapter 4

Miscellaneous Topics
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4.1 Introduction to Linear Groups and Geometry

Definition 4.1.1. Let K be a field. The general linear group of (n× n)-matrices over K consists
of the set of all invertible (n×n)-matrices with values in K under multiplication. The special linear
group SL(n,K) is the subgroup of GL(n,K) consisting of all matrices with determinant 1.

Definition 4.1.2. The projective special linear groups PSL(n,K) are defined by projectivization
as follows.

GIVE DEFINITION
What has this all got to do with projective geometry?

Definition 4.1.3. A linear group is a subgroup of the general linear group GL(n,K).

Definition 4.1.4. The classical groups consist of the orthogonal, unitary, and symplectic groups.

These groups are defined as stabilizers of various elements of Kn×n under various actions of
GL(n,K) or SL(n,K).

First we consider the change of basis in a bilinear form action, which is defined by

GL(n,K)×Kn×n → Kn×n

(P,A) 7→ P TAP

Definition 4.1.5. The orthogonal group O(n,K) is defined to be the stabilizer of the identity
matrix I ∈ Kn×n

O(n, k) = Stab(I) = {P ∈ GL(n,K) |P TP = I}

The special orthogonal group SO(n,K) is just defined as

SO(n,K) = SL(n,K) ∩O(n,K) .

Important cases when K = R or C.

Definition 4.1.6. O(p, q,K) is the stabilizer of the signature (p, q) form, Ip,q.

O(p, q,K) = Stab(Ip,q) = {P ∈ GL(p+ q,K) |P T Ip,qP = Ip,q}

and SO(p, q,K) = O(p, q,K) ∩ SL(p+ q,K).
In the case K = R, p = n and q = 1, we get the Lorentz groups denoted by O(n, 1) for short.

Definition 4.1.7. The symplectic group SP (2n,K) (usually K = R or C) is defined as

SP (2n,K) = Stab(J) = {P ∈ GL(2n,K) |P TJP = J}

where

J =
(

0 In
−In 0

)
.

It is an exercise to see that the symplectic matrices already have determinant 1, so we don’t get
anything new by intersecting with SL(n,K).
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For the next class of groups we shall restrict to the case K = C and consider that action of
GL(n,C) on C

n×n by the change of basis for hermitian forms

GL(n,C)× C
n×n → C

n×n

(P,A) 7→ P ∗AP

where P ∗ denotes the conjugate-transpose of P .

Definition 4.1.8. The unitary groups U(n) are defined as

U(n) = Stab(I) = {P ∈ GL(n,C) |P ∗P = I}

and the special unitary groups are defined as one would expect SU(n) = U(n) ∩ SL(n,C).

We shall discover some beautiful relationships between SU(2), SO(3), the 3-sphere S3 and the
quaternions in section ??, and between PSL(2,R), PSL(2,C), SO(n, 1) and hyperbolic geometry
in section ??.
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