Honors Calculus II [2423-001] Midterm II

Q1]...[20 points] Evaluate the following expressions and limits. Since you don't have a calculator, square roots, fractions etc. are allowed in your answers.

- $\log _{2}\left(\frac{1}{8}\right)$

Answer: Since $1 / 8=8^{-1}=\left(2^{3}\right)^{-1}=2^{-3}$ we have that $\log _{2}\left(\frac{1}{8}\right)=-3$.

- $\cos \left(\sin ^{-1}(-0.2)\right)$

Answer:

$$
\cos \left(\sin ^{-1}(-0.2)\right)=\sqrt{1-(-0.2)^{2}}=\sqrt{1-0.04}=\sqrt{0.96}
$$

- $\tan \left(\cos ^{-1}(0.3)\right)$

Answer:

$$
\tan \left(\cos ^{-1}(0.3)\right)=\frac{\sin \left(\cos ^{-1}(0.3)\right)}{\cos \left(\cos ^{-1}(0.3)\right)}=\frac{\sqrt{1-(0.3)^{2}}}{0.3}=\frac{10 \sqrt{0.91}}{3}=\frac{\sqrt{91}}{3}
$$

- $\lim _{x \rightarrow \infty} \frac{x^{1,000,000}}{(1.0000001)^{x}}$

Answer: 0 since exponentials in x (with base greater than 1) always grow faster than any power of x (seen in class).

- $\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{0.1}}$

Answer: 0 since $\ln x$ always grows more slowly than any positive power of x (again, seen in class).

Q2]...[20 points] Compute the following derivative.

$$
\frac{d}{d x}(\sin x)^{x^{2}}
$$

Use logarithmic differentiation.

$$
\ln y=x^{2} \ln (\sin x)
$$

and so taking derivatives w.r.t x of both sides gives

$$
\frac{1}{y} y^{\prime}=2 x \ln (\sin x)+x^{2} \frac{1}{\sin x} \cos x
$$

Thus

$$
y^{\prime}=(\sin x)^{x^{2}}\left[2 x \ln (\sin x)+x^{2} \cot x\right]
$$

Compute the following limit.

$$
\lim _{x \rightarrow 0} x^{\sqrt{x}}
$$

Take logs to begin with.

$$
\lim _{x \rightarrow 0} \ln y=\lim _{x \rightarrow 0} \sqrt{x} \ln (x)=\lim _{x \rightarrow 0} \frac{\ln x}{x^{-1 / 2}}
$$

By the ∞ / ∞ form of l'Hôpital's rule we get

$$
\lim _{x \rightarrow 0} \ln y=\lim _{x \rightarrow 0} \frac{1 / x}{-1 / 2 x \sqrt{x}}=\lim _{x \rightarrow 0}-2 \sqrt{x}=0
$$

Thus

$$
\lim _{x \rightarrow 0} y=e^{\lim _{x \rightarrow 0} \ln y}=e^{0}=1
$$

Q3]...[20 points] Find the inverse of the following function (show all your work).

$$
y=\tanh x
$$

Hint: I'll tell you that $\tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$.
Step 1. Interchange x and y.

$$
x=\frac{e^{y}-e^{-y}}{e^{y}+e^{-y}}
$$

Step 2. Solve for new y in terms of new x.

$$
x e^{y}+x e^{-y}=e^{y}-e^{-y}
$$

Multiply across by e^{y} to get

$$
x e^{2 y}+x=e^{2 y}-1
$$

or

$$
1+x=e^{2 y}(1-x)
$$

Thus we get

$$
e^{2 y}=\frac{(1+x)}{(1-x)}
$$

and so we take logs and divide by 2 to get

$$
y=\frac{1}{2} \ln \left[\frac{(1+x)}{(1-x)}\right]
$$

Suppose that a function f has an inverse g, and that $f(2)=3, f^{\prime}(2)=4$ and $f^{\prime \prime}(2)=7$.
Find $g^{\prime}(3)$.
We know that

$$
g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}
$$

which, in our case, gives

$$
g^{\prime}(3)=\frac{1}{f^{\prime}(g(3))}=\frac{1}{f^{\prime}(2)}=\frac{1}{4}
$$

Find $g^{\prime \prime}(3)$.
We recall from class (or derive again) that

$$
g^{\prime \prime}(x)=\frac{d}{d x} g^{\prime}(x)=\frac{d}{d x} \frac{1}{f^{\prime}(g(x))}=\frac{-1}{\left(f^{\prime}(g(x))\right)^{2}} f^{\prime \prime}(g(x)) g^{\prime}(x)=\frac{-f^{\prime \prime}(g(x))}{\left(f^{\prime}(g(x))\right)^{3}}
$$

In our case we get,

$$
g^{\prime \prime}(3)=\frac{-f^{\prime \prime}(2)}{\left(f^{\prime}(2)\right)^{3}}=\frac{-7}{64}
$$

Q4]...[20 points] Let

$$
h(x)=\frac{\ln x}{x} \quad \text { defined for } x>0
$$

- Show that $h^{\prime}(x)>0$ for $0<x<e$.

We have

$$
h^{\prime}(x)=\frac{x \frac{1}{x}-1 \ln (x)}{x^{2}}=\frac{1-\ln x}{x^{2}}
$$

Thus

$$
h^{\prime}(x)>0
$$

if and only if

$$
1-\ln x>0
$$

and this is true if and only if

$$
0<x<e
$$

- Show that $h^{\prime}(x)<0$ for $x>e$.

Again,

$$
h^{\prime}(x)<0
$$

if and only if

$$
1-\ln x<0
$$

and this is true if and only if

$$
x>e
$$

- Is the point $(e, h(e))$ a local max or a local min for h ?

It is a local max.

- Which is larger; e^{π} or π^{e} ?

Hint: this is related to the other parts of the question!
By the previous part we know that

$$
\frac{\ln e}{e}>\frac{\ln \pi}{\pi}
$$

This gives (on multiplying across by the positive number $e \pi$)

$$
\pi \ln e>e \ln \pi
$$

or

$$
\ln \left(e^{\pi}\right)>\ln \left(\pi^{e}\right)
$$

Taking exponentials of both sides (and remembering that e^{x} is an increasing function) gives

$$
e^{\pi}>\pi^{e}
$$

Q5]...[20 points] Evaluate the following integrals.

$$
\int \frac{d x}{2 x^{2}+3}
$$

This gave people more trouble than I expected! You notice that there is no $x d x$ on the numerator, so we can't expect a substitution of the form $u=x^{2}$ or $u=2 x^{2}+3$ to work. Also, you see (after a few attempts) that integration by parts is leading nowhere. So it must be something we already know: let's see.....what derivative involves reciprocals, x^{2} and + -signsyes! the derivative of $\tan ^{-1}(x)$.

In fact we remember from class (with the memory jog on the sheet at the end of the exam) that

$$
\frac{d}{d x}\left[\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)\right]=\frac{1}{x^{2}+a^{2}}
$$

Thus, our integral is

$$
\begin{gathered}
\frac{1}{2} \int \frac{d x}{x^{2}+(\sqrt{3 / 2})^{2}}=\frac{1}{2} \frac{\sqrt{2}}{\sqrt{3}} \tan ^{-1}\left(\frac{\sqrt{2} x}{\sqrt{3}}\right)+C \\
\int e^{2 x} \sin (3 x) d x
\end{gathered}
$$

Use integration by parts (with $u=\sin (3 x)$ and $d v=e^{2 x} d x$) to get

$$
\int e^{2 x} \sin (3 x) d x=\sin (3 x) \frac{e^{2 x}}{2}-\frac{1}{2} \int e^{2 x} 3 \cos (3 x) d x=\frac{\sin (3 x) e^{2 x}}{2}-\frac{3}{2} \int e^{2 x} \cos (3 x) d x
$$

This last integral is similar to the original, so try integration by parts on this last integral (with $u=\cos (3 x)$ and $\left.d v=e^{2 x} d x\right)$ to get

$$
\int e^{2 x} \sin (3 x) d x=\frac{\sin (3 x) e^{2 x}}{2}-\frac{3}{2}\left[\frac{\cos (3 x) e^{2 x}}{2}-\frac{-3}{2} \int \sin (3 x) e^{2 x} d x\right]
$$

Simplifying, gives

$$
\int e^{2 x} \sin (3 x) d x=\frac{\sin (3 x) e^{2 x}}{2}-\frac{3 \cos (3 x) e^{2 x}}{4}-\frac{9}{4} \int e^{2 x} \sin (3 x) d x
$$

Now, the last integral is identical to the first! Taking it to the left side, gives

$$
\frac{13}{4} \int e^{2 x} \sin (3 x) d x=\frac{\sin (3 x) e^{2 x}}{2}-\frac{3 \cos (3 x) e^{2 x}}{4}
$$

and so

$$
\int e^{2 x} \sin (3 x) d x=\frac{4}{13}\left[\frac{\sin (3 x) e^{2 x}}{2}-\frac{3 \cos (3 x) e^{2 x}}{4}\right]+C
$$

Remark: You could have done the integration by parts with $u=e^{2 x}$ and $d v=\sin (3 x) d x$ etc.) You should get the same answer.

Bonus Questions Compute the limit

$$
\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{\frac{1}{x^{2}}}
$$

Take logs first.

$$
\lim _{x \rightarrow 0} \ln y=\lim _{x \rightarrow 0}\left[\frac{\ln \left(\frac{\sin x}{x}\right)}{x^{2}}\right]
$$

which is equal (by l'Hôpital's rule in the $0 / 0$ case) to

$$
\lim _{x \rightarrow 0}\left[\frac{\frac{x}{\sin x} \frac{x \cos x-1 \sin x}{x^{2}}}{2 x}\right]=\lim _{x \rightarrow 0} \frac{x \cos x-\sin x}{2 x^{2} \sin x}
$$

Again, by l'Hôpital's rule (0/0-case) this is in turn equal to

$$
\lim _{x \rightarrow 0} \frac{\cos x-x \sin x-\cos x}{4 x \sin x+2 x^{2} \cos x}=\lim _{x \rightarrow 0} \frac{-\sin x}{4 \sin x+2 x \cos x}
$$

Again(!), by l'Hôpital's rule (0/0-case) this is equal to

$$
\lim _{x \rightarrow 0} \frac{-\cos x}{4 \cos x+2 \cos x-2 x \sin x}=\frac{-1}{6}
$$

Finally,

$$
\lim _{x \rightarrow 0} y=e^{-1 / 6}
$$

If $f^{\prime \prime}(x)$ is continuous, show that

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}=f^{\prime \prime}(x)
$$

Use l'Hôpital's rule (in the $0 / 0$-case) to say that the LHS is equal to

$$
\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-0+f^{\prime}(x-h)(-1)}{2 h}=\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x-h)}{2 h}
$$

Again, l'Hôpital's rule (0/0-case) tells us that this limit is the same as

$$
\lim _{h \rightarrow 0} \frac{f^{\prime \prime}(x+h)-f^{\prime \prime}(x-h)(-1)}{2}=\lim _{h \rightarrow 0} \frac{f^{\prime \prime}(x+h)+f^{\prime \prime}(x-h)}{2}
$$

Now, continuity of $f^{\prime \prime}$ tells us that as $h \rightarrow 0$ then $f^{\prime \prime}(x \pm h) \rightarrow f^{\prime \prime}(x)$, and so this last limit is just

$$
\frac{f^{\prime \prime}(x)+f^{\prime \prime}(x)}{2}=f^{\prime \prime}(x)
$$

And it's done!

- $\sinh (x)=\frac{e^{x}-e^{-x}}{2}$
- $\cosh (x)=\frac{e^{x}+e^{-x}}{2}$
- $\tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
- $\frac{d \sin ^{-1}(x)}{d x}=\frac{1}{\sqrt{1-x^{2}}}$
- $\frac{d \cos ^{-1}(x)}{d x}=\frac{-1}{\sqrt{1-x^{2}}}$
- $\frac{d \tan ^{-1}(x)}{d x}=\frac{1}{1+x^{2}}$
- $\frac{d \sinh ^{-1}(x)}{d x}=\frac{1}{\sqrt{1+x^{2}}}$
- $\frac{d \cosh ^{-1}(x)}{d x}=\frac{1}{\sqrt{x^{2}-1}}$
- $\frac{d \tanh ^{-1}(x)}{d x}=\frac{1}{1-x^{2}}$

