
PRINT NAME: SOLUTIONS

Honors Calculus II [2423-001] Midterm I
For full credit, please show all your work.

Q1]...[12 points] Evaluate the following limit of Riemann sums by first converting to a definite integral,
and then evaluating the integral.
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Let subdivision points be xi = 1+ i/n. As n→∞ these points range between a lower limit of 1+0 = 1

and an upper limit of 1 + n/n = 2. The widths are all equal to 1/n. Thus the limit of Riemann sums
becomes the following definite integral.
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Q2]...[11 points] Compute the following derivative.

d

dx

(∫ x3

x
cos(t2) dt

)

By the fundamental theorem and the chain rule we know that

d

dx

(∫ k(x)

l(x)
f(t) dt

)
= k′(x)f(k(x))− l′(x)f(l(x)) .

In our case we have f(t) = cos(t2), k(x) = x3 and l(x) = x, and so we get

d

dx

(∫ x3

x
cos(t2) dt

)
= 3x2 cos(x6)− cos(x2) .

Q3]...[33 points] By interpreting things geometrically (that is areas, odd-even functions, etc...), find the
values of the following integrals. You should not do anti-differentiation and evaluation!∫ 3

1
|x− 2| dx

The graph of y = |x− 2| is the line y = x− 2 when x ≥ 2 and is the line y = 2− x when x ≤ 2. The
region between this graph and the x-axis between the vertical lines x = 1 and x = 3 consists of two half
squares (of edge length 1). Thus the value of our integral is the positive area under this graph which is
1/2 + 1/2 = 1.



∫ √5

0

√
5− x2 dx

The graph of y =
√

5− x2 is the upper half of the circle (x2 +y2 = 5 = (
√

5)2) of radius
√

5 centered on
the origin. The integral represents the area of the quarter of this circle which resides in the first quadrant,
and so has value equal to π(

√
5)2/4 = 5π/4.

∫ π

−π
(2 + sin(x3)) dx

This integral splits as a sum of two integrals, with integrands 2 and sin(x3) respectively. The first
integral represents the area of a rectangle with base from −π to π (and so of length 2π) and height 2,
and so is 2(2π) = 4π. The second integral has a value of 0 since the function sin(x3) is an odd function
sin((−x)3) = − sin(x3) and the region is symmetric about the origin. Thus the value of the original integral
is 4π + 0 = 4π.

Q4]...[33 points] This question asks you to write down definite integrals corresponding to volumes of
revolution. You do not have to evaluate the integrals. You should draw a picture in each case.

• The volume obtained by revolving the region between the graphs of y = x2 and y =
√
x about the

x-axis. Use the cylindrical shell method.

Since we are to use the cylindrical shell method, and we are rotating about the x-axis, then we
should use horizontal strips. These will have thickness dy and will begin on the graph y =

√
x (that

is x = y2) and will end on the graph y = x2 (that is x =
√
y). Thus, we get

dV = 2π(radius)(length)(thickness) = 2π(y)(
√
y − y2)(dy) .

Finally, noting that the horizontal strips are parameterized by y starting at 0 and ending at 1, we
get

V =
∫ 1

0
2πy(
√
y − y2) dy .

• The volume obtained by revolving the region between the graphs of y = x2 and y =
√
x about the

x-axis. Use the washer method.

Since we have to use the washer method, and since we are rotating about the x-axis, then we should
use vertical strips. These will have thickness dx and will determine an inner radius of x2 and an
outer radius of

√
x. Thus

dV = π[(rado)
2 − (radi)

2](thickness) = π[x− x4]dx

and so we get

V =
∫ 1

0
π(x− x4) dx .



• The volume obtained by revolving the region between the graphs of y = x3, x = 0 and y = 1 about
the y-axis. Use the disk method.

Since we are rotating about the y-axis, and since we are using the disk method, then we should use
horizontal strips. They will have thickness dy and length equal to x = y1/3. Thus

dV = π(rad)2(thickness) = π(y1/3)2(dy)

and so

V =
∫ 1

0
πy2/3 dy .

Q5]...[11 points] Use the method of substitution to evaluate the following definite integral. Show
clearly what substitution you are making, and show all the details of your work.∫ a

0
x
√
a2 − x2 dx

Let u = a2− x2. Note that when x = 0 then u = a2− 02 = a2. Also, when x = a then u = a2− a2 = 0.
Furthermore,

du = −2xdx or xdx = −du/2

and the original integral becomes
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Bonus Question Use the substitution u = π − x to show that the following definite integrals are equal
for any continuous function f . ∫ π

0
xf(sinx) dx =

π

2

∫ π

0
f(sinx) dx

As was suggested, we let u = π− x. Thus du = −dx, when x = 0 then u = π− 0 = π, and when x = π
then u = π − π = 0. Thus the first integral (on the LHS) becomes

LHS = −
∫ 0

π
(π − u)f(sin(π − u)) du

which looks like a mess!
However, we know (should know!) from trigonometry that

sin(π − u) = − sin(−u) = sin(u) .

The first equality comes from the fact that when we add ±π to the input of a sine (or cosine) function, then
we change the sign of the output, while the second equality is just the fact that sine is an odd function.
This is the first nontrivial part of this answer. Thus we can simplify the integrand a bit to get

LHS =
∫ π

0
(π − u)f(sin(u)) du



which looks a lot better.
In fact, we can expand this out a bit to get

LHS =
∫ π

0
πf(sin(u)) du −

∫ π

0
uf(sin(u)) du

and we notice something very, very nice indeed (in fact, the whole point of this exercise!). Namely, the
second term above is (by replacing the dummy variable of integration u by another one x say) identical to
the original LHS. This is the second nontrivial part of the question. Thus we have

LHS = π
∫ π

0
f(sin(u)) du − LHS

or
2(LHS) = π

∫ π

0
f(sin(u)) du

Finally, we get

LHS =
π

2

∫ π

0
f(sinx) dx = RHS

which is what we needed to show (again, we replaced dummy variables of integration; x for u).


