Sp'04: MATH 1823–020	Calculus I	Dr. Noel Brady	
Friday 02/13/2004	Midterm I	8:30am–9:20am	
Name:	Student ID:	Student ID:	

Instructions.

- 1. No calculators or notes.
- 2. Attempt all questions.
- 3. Do not write on back of exam sheets. Extra paper is available.
- 4. Show all the steps of your work clearly. The method (reasoning) used to obtain an answer is worth more than the answer itself.

Question	Points	Your Score
Q1	9	
Q2	10	
Q3	8	
Q4	10	
Q5	10	
Q6	8	
TOTAL	55	

Q1]...[9 points] Evaluate the following limit, showing all your work.

$$\lim_{x \to 2} \frac{2(x-1)^2 - 2}{x-2}$$

This limit represents the slope of the tangent line to the graph of some function at some point. Determine a suitable function? What is the point on the graph? Draw a sketch of the graph. Include the point and the tangent line.

 $\mathbf{Q2}]\ldots [\mathbf{10} \ \mathbf{points}]$ Compute the following limits. Include the details of your work.

$$\lim_{h \to 0} \frac{\sqrt{3+h} - \sqrt{3}}{h}$$

$$\lim_{x \to 2} \frac{\frac{1}{x} - \frac{1}{2}}{x - 2}$$

Q3]...[8 points] Give the precise definition of the following limit (the version involving a notion of closeness for output values, ϵ , and a notion of closeness for input values, δ)

$$\lim_{x \to a} f(x) = L$$

Hint: It starts like this. We say that $\lim_{x\to a} f(x) = L$ if for every $\epsilon > 0$, there exists...

Use the precise definition of a limit to show that

$$\lim_{x \to 2} 3x + 1 = 7$$

Q4]... [10 points] The following graph represents the distance (measured in miles) that a car has traveled in time t (measured in hours).

Answer the following questions, giving reasons for your answers.

1. At which if the three times A, B, D is the car traveling the fastest?

- 2. At which if the three times A, B, D is the car traveling the slowest?
- 3. What is the speed of the car at time B?
- 4. At which of the 3 times C, E, F is the car accelerating?
- 5. At which of the 3 times C, E, F is the car decelerating?

 $Q5]\dots[10 \text{ points}]$ Is the function

$$f(x) = \begin{cases} x^2 + 3 & \text{if} \quad x \ge 0\\ 3x + 2 & \text{if} \quad x < 0 \end{cases}$$

continuous at x = 0? Justify your answer.

Is the function

$$g(x) = \begin{cases} x \sin(\frac{1}{x}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

continuous at x = 0? Justify your answer.

 $\mathbf{Q6}]\ldots [\mathbf{8} \ \mathbf{points}]$ Compute the following limit. Show details of your work.

$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{\sqrt[3]{x} - 1}$$