MATH 2513-001

QUIZ IV

Thursday, November 19, 2009

Q1]... Define what it means for a set A to be *countable*.

A set A is said to be countable if A is finite or if there exists a bijection $\mathbb{Z} \to A$.

Define what it means for two sets A and B to have the same cardinality.

Sets A and B have the same cardinality (written |A| = |B|) if there exists a bijection $A \to B$.

Say whether each of the following sets are countable or uncountable.

(1) \mathbb{Q} .

Countable. From class notes — similar to proof that $\mathbb{Z} \times \mathbb{Z}$ is countable. (Example 18 from Cardinality handout).

(2) \mathbb{R} .

Uncountable. From class notes — Cantor diagonalization argument. (Theorem 22 from Cardinality handout).

- (3) The set of irrational numbers. Uncountable. Since Q is countable, R is uncountable, and the union of two countable sets is countable. (Example 18, Theorem 22 and Example 19(a) from Cardinality handout).
- (4) The set of all points in the cartesian plane.
 Uncountable. Since it contains a copy of ℝ, eg. the x-axis, and subsets of countable sets are countable. (Theorems 22 and 20 from Cardinality handout).
- (5) The set $\mathbb{R}^{\mathbb{R}}$ of all functions from \mathbb{R} to \mathbb{R} . **Uncountable**. Since it contains a copy of \mathbb{R} as a subset, eg. $\{\chi_{\{x\}} \mid x \in \mathbb{R}\}$ is a subset of $\mathbb{R}^{\mathbb{R}}$, and subsets of countable sets are countable. (Theorems 22 and 20 from Cardinality handout).