

Instructions.

- 1. Attempt all questions.
- 2. Do not write on back of exam sheets. Extra paper is available if you need it.
- 3. Show all the steps of your work clearly.

Question	Points	Your Score
Q1	12	
Q2	11	
Q3	12	
Q4	15	
Q5	15	
Q6	20	
Q7	15	
TOTAL	100	

Q1]... [12 points] Find a disjunctive normal form expression (involving \land , \lor , \neg , and P, Q, R) which has the following truth table. Show the steps of your work.

P	Q	R	
Т	Т	Т	Т
Т	Т	F	F
Т	F	Т	Т
Т	F	F	F
F	Т	Т	F
F	Т	F	F
F	F	Т	Т
F	F	F	Т

Find a **conjunctive normal form** expression (involving \land , \lor , \neg , and P, Q, R) which has the same truth table above. Show the steps of your work.

Q2]... [11 points] Write down the distributive law for \land over \lor .

Write down the distributive law for \lor over \land .

Write down the two De Morgan laws (involving negations of \land and \lor statements).

Use the De Morgan and distributive laws to show that the expression

 $[P \land (\neg Q) \land R] \lor [P \land (\neg Q) \land (\neg R)] \lor [P \land Q \land R] \lor \neg [(\neg P) \lor (\neg Q) \lor R]$ is logically equivalent to P.

Q3]...[12 points] Are the following two expressions logically equivalent. If you say so, please explain why. If you say not, then please give an example which shows that they are different.

and

$$\forall x [P(x) \to Q(x)]$$

 $(\forall x P(x)) \to (\forall x Q(x))$

Same question for the expressions

 $\exists x [P(x) \lor Q(x)]$

and

 $(\exists x P(x)) \lor (\exists x Q(x))$

Q4]... [15 points] Give a direct proof of the following. If m and n are odd integers, then their product is also odd.

Write down the contrapositive of the following statement about integers n. If n^3 is even, then n is also even.

Prove the statement "If n^3 is even, then n is also even" by giving a proof of its contrapositive.

Q5]...[15 points] Give a proof of the following: *The cube root of 2 is irrational.* You are free to cite the results of Q4 if they are of any help to you.

Q6]...[20 points] State the principle of induction.

Give a proof by induction of the following. For each positive integer n,

$$1^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Q7]... [15 points] Give a proof by induction of the following. $2^{2n-1} + 3^{2n-1}$ is a multiple of 5 for all integers $n \ge 1$.