Discrete Mathematics

Elementary Number Theory

The aim of this section of the course is to prove the *Fundamental Theorem of Arithmetic*, and to give some of its applications. We shall also introduce congruences and modular arithmetic.

1. Theorem. (Fundamental Theorem of Arithmetic) Every integer $n \ge 2$ can be written as a product

$$n = p_1 \dots p_k$$

of primes p_i . Furthermore, this expression is unique up to rearranging the primes p_i .

Just give a proof of the existence part for now. Use well ordering of \mathbb{Z}^+ .

- 2. **Definition.** $p \in \mathbb{Z}^+$ is said to be *prime* if $p \neq 1$ and the only divisors of p are $\pm p$ and ± 1 .
- 3. Theorem. (Infinitely many primes) There are infinitely many primes.
- 4. **Examples.** Use fundamental theorem to prove the following: $\sqrt{2}$ is irrational; the only positive integers *n* for which \sqrt{n} is rational are the squares; $\log_2(3)$ is irrational; how many zeroes are there at the end of 100!
- 5. **Definition.** (Divides) Let $a, b \in \mathbb{Z}$. We say that b divides a, written b|a, if a = bc for some $c \in \mathbb{Z}$. We write $b \not\mid a$ if b does not divide a.
- 6. Theorem. (Test for primes) Let $n \in \mathbb{Z}^+ \{1\}$. If $p \not\mid n$ for each prime $p \leq \sqrt{n}$, then n is prime.
- 7. **Theorem.** (Properties of divides) Let $a, b, c \in \mathbb{Z}$. Then
 - (a) if a|b and a|c, then a|(b+c);
 - (b) if a|b, then a|bc for all $c \in \mathbb{Z}$;
 - (c) if a|b and b|c, then a|c.
- 8. **Theorem.** (Division Algorithm) Let $a \in \mathbb{Z}$ and $b \in \mathbb{Z}^+$. Then there exist unique $q, r \in \mathbb{Z}$, so that $0 \leq r < b$ and
 - a = bq + r
- 9. **Definition.** (Greatest common divisor) Let $a, b \in \mathbb{Z}$, not both zero. The largest integer d such that d|a and d|b is called the *greatest common divisor of a and b*. It is denoted by gcd(a, b).
- 10. **Definition.** (Relatively prime) Say that $a, b \in \mathbb{Z}$ are relatively prime if gcd(a, b) = 1. In general, we say that integers a_1, \ldots, a_n are relatively prime if $gcd(a_i, a_j) = 1$ for all $1 \le i < j \le n$.
- 11. **Theorem.** (gcd is a linear combination) Let $a, b \in \mathbb{Z}^+$. Then there exist $s, t \in \mathbb{Z}$ so that

$$gcd(a,b) = sa + tb$$

Two proofs. 1. Use back substitution and Euclidean Algorithm. 2. Use well ordering of \mathbb{Z}^+ .

- 12. Lemma. (Divisibility result) Let $a, b, c \in \mathbb{Z}^+$. If a|bc and gcd(a, b) = 1, then a|c. This divisibility result is a fundamental application of 11.
- 13. Lemma. If p is prime and $p|a_1 \dots a_n$ then $p|a_i$ for some $i \in \{1, \dots, n\}$.

- 14. Application. Give the proof of the uniqueness part of the Fundamental Theorem.
- 15. Lemma. (Key step of Euclidean Algorithm) Let $a, b \in \mathbb{Z}^+$. If a = bq + r then gcd(a, b) = gcd(b, r).
- 16. **Theorem.** (Euclidean Algorithm. Practical computation of gcd) Let $a, b \in Z^+$. Use the Division Algorithm to write $a = bq_1 + r_1$ for $q_1, r_1 \in \mathbb{Z}$, and $0 \le r_1 < b$. Then

$$gcd(a,b) = gcd(b,r_1)$$

Continue using the Division Algorithm to get $b = r_1q_2 + r_2$, with $0 \le r_2 < r_1$ $r_1 = r_2q_3 + r_3$, with $0 \le r_3 < r_2$: $r_{n-1} = r_nq_{n+1} + 0$.

Then $r_n = \gcd(a, b)$.

- 17. **Definition.** (Least common multiple) Let $a, b \in \mathbb{Z}^+$. The *least common multiple of a and b* is the smallest positive integer *m* so that a|m and b|m. It is denoted by lcm(a, b).
- 18. Another application of 11. (lcm, gcd and product) Let $a, b \in \mathbb{Z}^+$. Then

$$ab = \operatorname{lcm}(a, b)\operatorname{gcd}(a, b)$$

- 19. Application of fundamental theorem. Interpret gcd(a, b) and lcm(a, b) in terms of prime decompositions.
- 20. Definition. (Congruence) Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$. Say that a is congruent to b modulo m, written $a \equiv b \pmod{m}$, if m|(a b).

Equivalently, $a \equiv b \pmod{m}$ if a = kb + m for some $k \in \mathbb{Z}$.

- 21. **Theorem.** (Properties of congruence) Let $a, b, c \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$. Then
 - (a) if $a \equiv a \pmod{m}$;
 - (b) if $a \equiv b \pmod{m}$, then $b \equiv a \pmod{m}$;
 - (c) if $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$, then $a \equiv c \pmod{m}$.
- 22. **Theorem.** (Further properties of congruence) Let $a, b, c, d \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$. Suppose that $a \equiv b \pmod{m}$ and that $c \equiv d \pmod{m}$. Then
 - (a) $a + c \equiv b + d \pmod{m}$, and
 - (b) $ac \equiv bd \pmod{m}$.