MaTH 2924
EXATH3 SOLUTIONS
Many people missed the fact that there is a (2n-1) term in the
\#1 $\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots \cdots(2 n-1)}{5^{n} \cdot n!}$ numerator which cancels with the $(2 n-1)$ term in the denominator.

$$
\begin{aligned}
a_{n}=\frac{1 \cdot 3 \cdot 5 \cdot \cdots(2 n-1)}{5^{n} \cdot n!}, a_{n+1}=\frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)(2 n+1)}{5^{n+1} \cdot(n+1)!} \\
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & \left.=\lim _{n \rightarrow \infty} \backslash \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)(2 n+1)}{5^{n+1} \cdot(n+1)!} \cdot \frac{5^{n} \cdot n!}{1 \cdot 3 \cdot 5 \cdots(2 n-1)} \right\rvert\, \\
& \left.=\lim _{n \rightarrow \infty} \backslash \frac{2 n+1}{5(n+1)} \right\rvert\, \\
& =21_{5}<1
\end{aligned}
\end{aligned}
$$

\Rightarrow the series converges by Ratio test

$$
\text { \#2 } \sum_{n=0}^{\infty} \frac{(-1)^{n}}{\sqrt{7 n+1}}
$$

consider $\sum_{n=0}^{\infty}\left(\frac{k 1^{n}}{\sqrt{7 n+1}}\right)=\sum_{n=0}^{\infty} \frac{1}{\sqrt{7 n+1}}=\sum_{n=0}^{\infty} a_{n}$ (sam)

$$
\text { let } m=\frac{1}{\sqrt{n}}
$$

we know by paries $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{b_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\sqrt{n}}{\sqrt{n+1}}\right|=\frac{1}{\sqrt{7}}>0
$$

\Rightarrow By an Limit comnarision test
$\Rightarrow \sum_{n=0}^{\infty} \frac{(-1)^{n}}{\sqrt{7 n+1}}$ is "Not" Absolutely convergent
Lets check for convergence.

$$
\begin{aligned}
& \text { check for } \\
& a_{n}-\frac{1}{\sqrt{7 n+1},} \quad \begin{aligned}
7(n+1)+1 & =7 n+8
\end{aligned}>7 n+1 \\
& \Rightarrow \frac{1}{7 n+1}>\frac{1}{7 n+8} \\
& \Rightarrow \frac{1}{\sqrt{7 n+1}}>\frac{1}{\sqrt{7 n+8}} \\
& \Rightarrow a_{n}>a_{n+1}
\end{aligned}
$$

alpo $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{7 n+1}}=0$
\Rightarrow By Alternating series test
$\sum_{n=0}^{\infty} \frac{-1)^{n}}{\sqrt{7 n+1}}$ is convergent
\Rightarrow the series is conditionally convergent
$\# 3$

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{(5 x-4)^{n}}{n^{3}} \\
& a_{n}=\frac{(5 x-4)^{n}}{n^{3}}, \quad a_{n+1}=\frac{(5 x-4)^{n+1}}{(n+1)^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right\rangle=\lim _{n \rightarrow \infty}\left|\frac{(5 x-4)^{n+1}}{(n+1)^{3}} \cdot \frac{3}{(5 x-4)^{n}}\right\rangle \\
&=|5 x-4| \lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{3} \\
&=(5 x-4 \mid \\
& \text { want } \quad|5 x-4|=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right\rangle<1 \\
& \text { for convergence }
\end{aligned}
$$

for convergence

$$
\begin{aligned}
\text { for } & \quad|x-4 / 5|<1 / 5 \\
|5 x-4|<1 & \Rightarrow \quad \text { Radius of } c o r
\end{aligned}
$$

\Rightarrow Radius of conv. $=Y_{5}$

$$
\begin{aligned}
& -1 / 5<x-4 / 5<1 \\
\Rightarrow & 3 / 5<x<1
\end{aligned}
$$

check at end point ion

$$
\left.x=315, \quad \sum_{n=1}^{\infty} \frac{\left(5 \cdot(3 / 5)^{-1}\right)^{n}}{n^{3}}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}}\right\} \begin{gathered}
\text { convener by } \\
\text { neriesmatis } \\
\text { test }
\end{gathered}
$$

\Rightarrow Inkencal of convergence $=[3 / 5,1]$
(14) Taylor series for $f(x)=\cos x$ about $x=\pi / 2$

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}, a=\pi / 2 \\
& f(\pi / 2)=0 \\
& f^{\prime}(x)=\frac{d}{d x} \cos x=-\sin x \Rightarrow f^{\prime}(\pi / 2)=-1 \\
& f^{\prime}(x)=-\cos x \Rightarrow f^{(2)}(\pi / h)=0 \\
& f^{(3)}(x)=\sin x \Rightarrow f^{(3)}(\pi / 2)=1
\end{aligned}
$$

$$
\Rightarrow f^{(n)}(\pi / 2)= \begin{cases}0 & \text { if } \\ n \text { is even } \\ (H) & \text { if } n \text { is } 1,5,9, \ldots\end{cases}
$$

1 if n is $3,7,11, \cdots$

$$
\begin{aligned}
\Rightarrow f(x) & =\frac{-1}{1!}(x-\pi / 2)+\frac{1}{3!}(x-\pi / 2)^{3}+\frac{(-1)^{2}}{5!}(x-\pi / 2)^{5}+\frac{1}{7!}\left(x-\frac{\pi}{2}\right)^{7} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{(x-\pi / 2)^{2 n+1}}{(2 n+1)!}
\end{aligned}
$$

$\# 5$ Estimate $\int_{0} \cos ^{2} x d x$ with in 0.01

$$
\begin{aligned}
& \cos x=\sum_{n=0}^{\infty}(-)^{n} \frac{x^{2 n}}{(2 n)!} \Rightarrow \cos \left(x^{2}\right)=\sum_{\substack{n=0}}^{\infty}(-1)^{n} \frac{\left(x^{2}\right)^{2 n}}{(2 n)!} \\
& =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{(2 n)!} \\
& \left.\int_{0}^{1} \cos x^{2} d x=\int_{0}^{1} \sum_{n=0}^{\infty}(t) \frac{x^{4 n}}{(2 n)!}\right) d x \\
& =\sum_{n=\infty}^{\infty}\left[\int_{0}^{n}(-1)^{n} \frac{x^{(n)}}{(2 n)!} d x\right] \\
& =\sum_{n=0}^{\infty=\infty}\left[\frac{(1)^{n} \times(n+1)}{(2 n)!(4 n+1)}\right]_{0}^{1} \\
& =\sum^{\infty} \frac{(-1)^{n}}{(4 n+1)(2 n)!} \\
& h=0 \\
& S_{0}=\frac{(-1)^{0}}{0!\cdot 1}=1 \\
& \text { \}difterences } \frac{1}{10}=0.1 \\
& S_{1}=S_{0}+\frac{(-1)}{5.21}=1-\frac{1}{10} \\
& \left.S_{2}=S_{1}+\frac{1}{\left.(4.2)+1)(4)_{0}\right)}=1-\frac{1}{10}+\frac{1}{9.24}\right\} \text { lift. }=\frac{1}{9.24}<\frac{1}{100}=0.01 \\
& \Rightarrow \quad \int_{0} \cos ^{2} x d x \approx 1-\frac{1}{10}+\frac{1}{216} \\
& \text { You can write series out } \\
& \text { term by term here too. } \\
& \text { You do not have to write } \\
& \text { out the general term for } \\
& \text { full points. } \\
& \text { an points. }
\end{aligned}
$$

