Honors Calculus II [2423-001] Quiz I

Q1]...[10 points] Write down the expressions (formulas) for

$$
\sum_{i=1}^{n} i \quad \text { and for } \quad \sum_{i=1}^{n} i^{2}
$$

Solutions:

$$
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

and

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Compute the definite integral below using limits of Riemann sums.

$$
\int_{1}^{2} x^{2}-x d x
$$

Solution: Using n subintervals of equal width, we see that the widths are $\triangle x_{i}=(2-1) / n=1 / n$, and that the right-hand endpoints of the intervals are $x_{i}=1+i / n$ for $1 \leq i \leq n$.

Thus the Riemann sums (using right-hand endpoints) become

$$
\begin{aligned}
\sum_{i=1}^{n}\left((1+i / n)^{2}-(1+i / n)\right) \Delta x_{i} & =\sum_{i=1}^{n}\left(1+2 i / n+i^{2} / n^{2}-1-i / n\right)(1 / n) \\
& =\left(1 / n^{2}\right) \sum_{i=1}^{n}\left(i+i^{2} / n\right) \\
& =\left(1 / n^{2}\right)[n(n+1) / 2+n(n+1)(2 n+1) / 6 n] \\
& =\frac{3 n^{2}+3 n+2 n^{2}+3 n+1}{6 n^{2}} \\
& =\frac{5 n^{2}+6 n+1}{6 n^{2}}
\end{aligned}
$$

which tends to $5 / 6$ as $n \rightarrow \infty$.

