We use the same notation as in question 1 of the discovery project. $\mathbf{v}_{\mathbf{1}}$, $\mathbf{v}_{\mathbf{2}}, \mathbf{v}_{\mathbf{3}}$ and $\mathbf{v}_{\mathbf{4}}$ are the outward pointing normal vectors to the four faces of an arbitrary (not necessarily right angled) tetrahedron. The lengths of the $\mathbf{v}_{\mathbf{i}}$ are equal to the areas of the corresponding faces of the tetrahedron.

1. Use the result of Q1 to prove the following generalization of the law of cosines

$$
\left|\mathbf{v}_{\mathbf{4}}\right|^{2}=\left|\mathbf{v}_{\mathbf{1}}\right|^{2}+\left|\mathbf{v}_{\mathbf{2}}\right|^{2}+\left|\mathbf{v}_{\mathbf{3}}\right|^{2}+2\left|\mathbf{v}_{\mathbf{1}}\right|\left|\mathbf{v}_{\mathbf{2}}\right| \cos \theta_{12}+2\left|\mathbf{v}_{\mathbf{2}}\right|\left|\mathbf{v}_{\mathbf{3}}\right| \cos \theta_{23}+2\left|\mathbf{v}_{\mathbf{3}}\right|\left|\mathbf{v}_{\mathbf{1}}\right| \cos \theta_{31}
$$

where $\theta_{i j}$ denotes the angle between the normal vectors $\mathbf{v}_{\mathbf{i}}$ and $\mathbf{v}_{\mathbf{j}}$.
2. Say why this is a generalization of the law of cosines. Remember that the law of cosines for a triangle with sides of length a, b and c states that

$$
c^{2}=a^{2}+b^{2}-2 a b \cos C
$$

where C is the angle between the sides of length a and b. In particular, explain the difference in signs in the trig terms.

