
Math 4513-001 Senior Seminar Spring 2010

Group Theory notes

(1) Definition. A group is a set G together with a binary operation · : G × G → G, such that
(a) The operation · is associative.

This means (a · b) · c = a · (b · c) for all a, b, c ∈ G.
(b) There is an identity element in G.

There exists 1 ∈ G so that 1 · g = g · 1 = g for all g ∈ G.
(c) There are inverses in G.

For each g ∈ G there exists g−1 ∈ G so that g · g−1 = g−1 · g = 1.

(2) Remark. When speaking about groups in general we often denote the binary operation by juxtaposition,
writing gh for g · h. When speaking about particular groups we may use other symbols such as + or ◦ for
the binary operation.

(3) Examples. We reminded ourselves of the definition of complex numbers, their addition and multiplica-
tion, and we considered the geometry behind multiplication of complex numbers (polar form).

We gave a definition of modular (clock) arithmetic.
Still to do. Introduce permutation groups. Introduce some matrix groups.

(C,+), (R,+), (Q,+), (Z,+),
(R+, ·), (Q+, ·), (C − {0}, ·), (R − {0}, ·), (Q − {0}, ·),
({e2πi/3, e4πi/3, 1}, ·), ({±1}, ·), ({±i,±1}, ·), ({e2πmi/n |m,n ∈ Z+, 1 ≤ m ≤ n }, ·),
(S1, ·) where S1 = {z ∈ C | |z| = 1} is the set of unit complex numbers.
(Zn,+), (Zp − {0}, ·),
(Perm({1, 2, . . . , n}), ◦). Notation: Sn is often used to denote (Perm({1, 2, . . . , n}),
GL(n, C), GL(n, R), GL(n, Q), SL(n, C), SL(n, R), SL(n, Q), SL(n, Z).
Orthogonal and special orthogonal groups.
Heisenberg group.
Encoding functions : R → R of the form x �→ ax + b (a �= 0) by 2 × 2-matrices.
Isometries of the Euclidean line.

(4) Definition. Let (G, ·) be a group. A subset H of G is said to be a subgroup of G if 1 ∈ H and if H is
closed under multiplication and taking inverses. We write H < G to denote that H is a subgroup of G.

(5) Examples.
(a) (Z,+) < (Q,+) < (R,+) < (C,+)
(b) (Q+, ·) < (R+, ·) < (R − {0}, ·) < (C − {0}, ·)
(c) ({±1}, ·) < (R − {0}, ·)
(d) ({±1,±i}, ·) < (S1, ·) < (C − {0}, ·)
(e) many more examples in class notes.

(6) Definition. Let G and H be groups. A homomorphism is a map ϕ : G → H such that

ϕ(g1g2) = ϕ(g1)ϕ(g2) for all g1, g2 ∈ G.

An isomorphism is a homomorphism ϕ : G → H which is a bijection.
An isomorphism G → G is called an automorphism of G.

(7) Properties. Elementary properties of groups.
(a) The identity element of a group is unique.
(b) Inverses of elements in a group are unique.
(c) Left cancellation law holds in a group. If gx = gy then x = y.
(d) Right cancellation law holds in a group. If xg = yg then x = y.
(e) A homomorphism G → H must take the identity in G to the identity in H.
(f) A homomorphism ϕ : G → H satisfies ϕ(g−1) = ϕ(g)−1 for all g ∈ G.
(g) Given g ∈ G the left multiplication map Lg : G → G : x �→ gx is a bijection.
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(8) Cayley’s Theorem. Let G be a group. Given g ∈ G let Lg denote the left multiplication by g map.
The map

Φ : G → Perm(G) : g �→ Lg

is an injective homomorphism. In particular, the map

Φ : G → Φ(G) < Perm(G)

is an isomorphism between G and the subgroup Φ(G) of Perm(G). In other words every group G can be
considered as a group of permutations of some set.

(9) Examples. Given in class.

(10) Cosets. Let G be a group and H < G a subgroup. Given g ∈ G the set

gH = {gx |x ∈ H}
is called a left coset of H in G.

You should prove that the restriction of the left multiplication map Lg to the subset H gives a bijection

Lg|H : H → gH

(11) Lagrange’s Theorem. Let G be a group and H < G a subgroup. Then left cosets of H in G are either
disjoint or equal. That is, if g1H ∩ g2H �= ∅, then g1H = g2H. Thus the distinct left cosets of H in G
form a partition of G.

In particular, if |G| < ∞ and H < G, then |H| divides |G|.
(12) Transversals. Let G be a group and H < G a subgroup. A subset T ⊂ G is called a transversal for H

in G if it contains a single representative of every left coset of H in G. That is T ∩ gH is a singleton set
for each distinct left coset gH of H in G.

(13) Examples. We saw many examples in class.
(a) {1, (12)} is a transversal for the subgroup {1, (123), (132)} in S3.
(b) {1, (123), (132)} is a transversal for the subgroup {1, (23)} in S3.
(c) The interval [0, 1) is a transversal for Z in R.
(d) There is a transversal for Q in R which is contained inside of [0, a] for any positive number a.

(14) A warm-up version of the Banach-Tarski paradox. See later!

(15) Order of an element. Let G be a groups. The order of the element g ∈ G is the smallest positive
integer n such that gn = 1. If no such positive integer exists, then g is said to have infinite order.

(16) Generating sets. Let G be a group. A subset A ⊂ G is called a generating set for G if every element
of G can be expressed as a product of elements of A and inverses of elements of A.

(17) Examples. We saw many examples in class.
(a) {1} and {2, 3} are generating sets for Z.
(b) {(12), (123)} is a generating set for S3.
(c) {(12), (1 . . . n)} is a generating set for Sn.

(18) Finitely generated groups. A group G is said to be finitely generated if it has a generating set with
finitely many elements.

(19) Example. We’ve seen that Sn, Z and Zn are finitely generated.
Show that none of Q, R, C are finitely generated.

(20) Cayley graphs. Let G be a finitely generated group, with finite generating set A ⊂ G. The Cayley
graph of G with respect to A, denoted by ΓA(G), is defined as follows. The vertex set of ΓA(G) is take to
be the set G. The edge set of ΓA(G) is the set G × A, with an edge (g, a) connecting the vertex g to the
vertex ga.
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(21) A geometric version of Cayley’s theorem. Let G be a group with finite generating set A.
We can put a distance on the Cayley graph ΓA(G) by requiring that each edge be either a unit interval

or a circle of circumference 1 (depending on whether the endpoints of the edge are distinct or not), and
then defining the distance between two points to be the length of a shortest path connecting them.

The elements of the group G move the vertices of ΓA(G) around by left multiplication. Since ΓA(G)
is defined using right multiplication, and since group multiplication is associative, we see that adjacent
vertices are sent to adjacent vertices by left multiplication. Thus we can see where left multiplication by
elements of G sends edges of ΓA(G). We saw in class that left multiplication by g ∈ G gives a bijective
map of ΓA(G) which preserves distance. This is called an isometry of ΓA(G). We say that G acts on
ΓA(G) by isometries.

(22) Normal subgroups. Let G be a group and H < G a subgroup. We say that H is a normal subgroup of
G if

gHg−1 = H for all g ∈ G

or equivalently if
gH = Hg for all g ∈ G.

We denote the fact that H is a normal subgroup of G by writing H � G.

(23) Quotient groups. Let G be a group and H � G. Then the set G/H of left cosets of H in G becomes a
group under the following multiplication operation

(g1H)(g2H) = g1g2H

(24) Kernels of homomorphisms. Let ϕ : G → H be a homomorphism of groups. The kernel of ϕ, denoted
by ker(ϕ), is defined to be

ker(ϕ) = {g ∈ G | ϕ(g) = 1 }
Prove that ker(ϕ) � G.
Prove that ker(ϕ) completely encodes the failure of ϕ to be injective; namely, ϕ is injective if and only

if ker(ϕ) = {1}. You should show that ϕ(g1) = ϕ(g2) if and only if g−1
1 g2 ∈ ker(ϕ).

(25) Image of a homomorphism. Let G and H be groups, and ϕ : G → H be a homomorphism. The image
of ϕ is defined to be the set ϕ(G) = {ϕ(g) | g ∈ G}. It is a subgroup of H.

(26) First isomorphism theorem. Let ϕ : G → H be a homomorphism of groups. Then G/ker(ϕ) is
isomorphic to ϕ(G).

(27) Examples. There are lots of examples around. Think of your other math classes.
(a) In linear algebra the image of a linear map T : V → W is a subspace T (V ) of the co-domain vector

space W . The null space null(T ) is the kernel ker(T ). The first isomorphism theorem says that, as
additive groups (ignore the scalar multiplication), we have an isomorphism between V/ker(T ) and
T (V ). This has lots of geometric content in linear algebra. An example is the rank-nullity theorem,
which states that the dimension of T (V ) and the dimension of ker(T ) add to give the dimension of
V . Another example is the case of projection maps where the image and the kernel and the additivity
of dimensions all make very intuitive sense.
You might like to think of the group theory version of the first isomorphism theorem as a kind of
non-commutative linear algebra.

(b) Let ϕ : C−{0} → S1 : z �→ z/|z|. Then ker(ϕ) is the subgroup R+ of C− {0}, and the cosets of R+

are the open rays from the origin of the form eiθR+. The set S1 is a transversal for the set of left
cosets of R+ in C − {0}. The first isomorphism theorem gives an isomorphism between the quotient
group of left cosets (C − {0})/R+ and S1.

(c) Example 27b should enable you to write down an isomorphism between the “cylinder group” R+×S1

and C − {0}. Here the first group is the cartesian product of the multiplicative groups R+ and S1.
You can think of C−{0} as a circles worth of open rays R+. Another way to think of a circles worth
of lines is as an infinite cylinder. This intuition is an important starting point in complex analysis if
you are going to think about the complex exponential function and complex logarithms.

(d) Z/nZ is isomorphic to Zn. This is often how Zn is defined in an abstract algebra course.
(e) O(2)/SO(2) is isomorphic to Z2. Think of the determinant map.
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(f) Gl(n, R)/Sl(n, R) is isomorphic to R − {0}. Think of the determinant map.
(g) S3/〈(123)〉 is isomorphic to Z2.

(28) Group actions on sets.

(29) Orbits, stabilizer sibgroups, and fixed sets.

(30) The Burnside orbit counting lemma.

(31) Applications of the Burnside lemma.

(32) Isometries of R.

(33) Infinite dihedral group.

(34) Isometries of R2.

(35) Dihedral groups.

(36) Frieze pattern groups.

(37) Wallpaper pattern groups.

(38) Isometries of R3.

(39) Isometries of regular solids.

(40) Investigating the group SO(3).

(41) Free groups.

(42) Free subgroups of matrix groups.


