Topology II

Free Groups and Free Products

- 1. Prove that if $g, h \in F(X) \{1\}$ and [g, h] = 1, then $\langle g, h \rangle \cong \mathbb{Z}$. Hint: use normal forms, and induction on |g| + |h|. Note that one can always arrange that g is cyclically reduced without increasing |g| + |h|.
- 2. Prove that if $g \in F(X) \{1\}$, then the centralizer $C(g) \cong \mathbb{Z}$.
- 3. Let $\langle \langle A \rangle \rangle$ denote the normal subgroup generated by A. Prove that $A * B / \langle \langle A \rangle \rangle$ is isomorphic to B.
- 4. If $g \in A * B$ has cyclically reduced normal form of length greater than 1, then g has infinite order.
- 5. Prove that if $A \neq 1$ and $B \neq 1$, then the center Z(A * B) = 1.
- 6. Prove that if $g \in A * B$ and $ord(g) < \infty$, then g is conjugate to an element of A or to an element of B.
- 7. Let m(G) denote the maximum of the orders of finite order elements of the group G. Prove that $m(A * B) = \max\{m(A), m(B)\}.$
- 8. Let [G,G] denote the commutator subgroup of the group G. Prove that if $G = \mathbb{Z}_m * \mathbb{Z}_n$, then $G/[G,G] \cong \mathbb{Z}_m \times \mathbb{Z}_n$.
- 9. If $\mathbb{Z}_m * \mathbb{Z}_n \cong \mathbb{Z}_p * \mathbb{Z}_q$, then $\{m, n\} = \{p, q\}$. Hint, use problems 7 and 8.
- 10. Let $m, n \in \mathbb{Z}^+$ and let $G_{m,n} = \langle a, b \mid a^m = b^n \rangle$.
 - (a) Prove that $\langle a^m \rangle < Z(G_{m,n})$, and so $\langle a^m \rangle \lhd G_{m,n}$.
 - (b) Prove that $G_{m,n}/\langle a^m \rangle \cong \mathbb{Z}_m * \mathbb{Z}_n$.
 - (c) Use problem 5 above to conclude that $\langle a^m \rangle = Z(G_{m,n})$. Thus (b) becomes

$$\frac{G_{m,n}}{Z(G_{m,n})} \cong \mathbb{Z}_m * \mathbb{Z}_n \,.$$

(d) Now prove that if $G_{m,n} \cong G_{p,q}$, then $\{m,n\} = \{p,q\}$.