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Introduction 

This paper derives from a course in group theory which I gave at Berkeley in 
1982. I wanted to prove the standard theorems on free groups, and discovered 
that, after a few preliminaries, the notion of "locally injective" map (or "im- 
mersion") of graphs was very useful. This enables one to see, in an effective, 
easy, algorithmic way just what happens with finitely generated free groups. 
One can understand in this way (1) Howson's theorem that if A and B are 
finitely generated subgroups of a free group, then A ~ B  is finitely generated, 
and (2) M. Hall's theorem that finitely generated subgroups of free groups are 
closed in the profinite topology. 

During this course, S.M. Gersten came up with a simple proof of H. 
Neumann's inequality on the ranks in Howson's theorem. One of the ideas in 
Gersten's proof was to use core-graphs (graphs with no trees hanging on). 
Subsequently, I found that some consequences of a paper of Greenberg's could 
be proved using core-graphs and "covering translations" of immersions; the 
most striking such result is that if A and B are finitely generated subgroups of 
a free group and if A c~ B is of finite index in both A and B, then A ~ B is of 
finite index in A v B, the subgroup generated by A uB.  

1. The Category of Graphs 

1.1. By graph and map of graphs, I mean something purely combinatorial or 
algebraic. Pictures can be drawn, but one has to understand that maps are 
rigid and not just continuous, maps do not collapse edges or wrap edges 
around several edges. The formulation below is due to Serre [9]. 

Specifically, a graph F consists of two sets E and V, and two functions 
E--+E and E-+V: For each eEE, there is an element gEE, and an element t(e)EV. 
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The rules to be satisfied are just these: g = e  and O4:e. An e~E is a directed 
edge of F; ~ is the reverse of e. The elements of Vare called vertices of F; l(e)is 
the initial vertex of the edge e. We define the terminal vertex of e to be z(e) 
= l ( ~ ) .  

An orientation of F consists of a choice of exactly one edge in each pair 
{e,~}. Another way to say this: the group Z 2 acts freely on the edges of F, and 
an orientation is a choice of a representative in each orbit. 

A map of graphs f :  F--*A consists of a pair of functions, edges to edges, 
vertices to vertices, preserving the structure. Given f, an orientation of the 
target A determines a unique orientation of F which is preserved by f, called 
the orientation of F induced by f. 

Thus, graphs and their maps form a category in which various categorial 
concepts can be discussed. There are two functors, "edges" and "vertices," 
from graphs to the category of sets; I call a categorical construction obvious if 
it is preserved by these two functors. Thus, monomorphism, epimorphism, 
direct limit, product, coproduct, pullback, pushout are all obvious. However, 
some of these deserve more than a word. 

1.2. Let us consider pushouts. In the category of sets, pushouts have a mys- 
terious quality, being defined in terms of equivalence relations generated by 
certain binary relations. For example, if G is a group containing subgroups A 
and B, and if C = A v B  is the subgroup generated by A u B ,  and if G/X 
denotes the set of left cosets, then 

G , G/A 

I 1 
G/B , G/C 

is a pushout diagram. 
In graphs, pushouts do not always exist. The reason is that a pushout of 

free Z2-sets may not be free. The necessary and sufficient condition for the 
pushout of a pair of maps of graphs, ~1 : F--*A1 and c~2: F--,A2, to exist is that 
there exist orientations of F, AI, A 2 which are preserved by ~1 and :r When 
this condition is satisfied, the pushout is "obvious." 

1.3. Pullbacks in the category of graphs always exist and are "obvious" and are 
easy to construct: 

Let / /1:  F1--'A, f12:/'2 --*d be maps of graphs. Define F 3 to have 
vertex-set = {(u, v)lu a vertex of F 1, v a vertex of F2,//1 (u)=//2(v)} 
edge-set similarly 

and soon.There  will be maps o f f  3 to F 1 and F z which form, with//1 and//2,  a 
pullback diagram. 

This pullback is a sub-graph of the product F~ x F2, which is an "obvious" 
construction. A curious fact is, however, that products seem to be quite useless 
from the point of view of group theory, whereas pullbacks are important. 
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2. Paths 

2.1. A path p in F, of length n = [p[, with initial vertex u and terminal vertex v, is 
an n-tuple of edges of F, p = e 1 e2... e,, such that for i=  1, ..., n - 1 ,  we have z(ei) 
=z(ei+l), and such that u = t ( e l ) a n d  v=z(e,). For n=0 ,  given any vertex v, there 
is a unique path A v of length 0 whose initial and terminal vertices coincide and 
are equal to v. Another way to say this: The standard arc of length n, A,, can 
be described as the interval [0, n] subdivided at the integer points; then our 
path p is a map of graphs p: An~F such that p(0)=u,  p(n)=v. 

A path p is called a circuit if its initial and terminal vertices coincide. 
If p and q are paths in F and the terminal vertex of p equals the initial 

vertex of q, they may be concatenated to form a path pq with IPql =[Pl+bq[, 
whose initial vertex is that of p and whose terminal vertex is that of q. 

The set of all paths in F with the operation of concatenation is a small 
category, denoted P(F). It can be thought of as the category generated by F. A 
map of graphs f : F ~ A  induces a length-preserving homomorphism (functor) 
denoted by the same symbol f :  P(F)--.P(A). 

2.2. A round-trip is a path of the form e~. If a path p contains two adjacent 
edges forming a round-trip, then by deleting that round-trip we get a path p' 
with the same initial and terminal vertices as p, and with hp'l = Ipl-2.  We write 
p%p', and think o f p '  as obtained from p by an elementary reduction. 

The equivalence relation on P(F) generated by % is called homotopy and is 
denoted by ~. Concatenation of paths is compatible with homotopy, and thus 
the set of H-classes of P(F) forms a small category denoted by re(F). Each 
element of 7r(F) has an inverse: Let [p] be the homotopy class of p; i fA v is the 
path of length 0 at v, let / lv=A~; if p=qe, where e is an edge, define 
recursively p=eq; then [ p ] - i  =[p] .  This justifies calling re(F) the fundamental 
groupoid of F. The set of elements of zt(F) starting and ending at a fixed vertex 
v forms a group, nl(F, v), the fundamental group of F based at v. 

Given a map f :  F--.A there are defined homomorphisms,  denoted by the 
same symbol, 

f :  7r(F)~7~(A), 
f :  rc 1 (F, v)~rt 1 (A, f  (v)). 

2.3. The case of a graph F with just one vertex is classical: P(F) is just the free 
monoid on E; if (9 is an orientation of F, then zc(F)=~I(F, v) is the free group 
on (9. 

We can define, in general A, a reduced path to be a path in A containing no 
round-trip. Every path is clearly homotopic to some reduced path. 

In the case of a one-vertex graph E the classical theory shows that each 
homotopy class of paths contains a unique reduced path. This can be extended 
easily (see 5.2) to general graphs. 

2.4. A graph is connected if any pair of vertices is joined by some path. In 
general, a graph is the disjoint union (coproduct) of its connected components. 

A graph is a forest if the only reduced circuits have length 0. A tree is a 
connected forest. 
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If u and v are vertices in a tree T, then there is a unique reduced path  in T 
start ing at u and ending at v. This path  is denoted [u, v]7.. 

We now list a few classical exercises, some more  difficult than  others: 

(a) Every graph F contains a maximal forest. 
(b) Every maximal forest in F contains all the vertices ofF. 
(e) I f  F is connected, then every maximal forest in F is a tree. 
(d) Let v be a vertex of a connected graph F, containing a maximal tree T. 

Let (9 be an orientation ofF; for each e~C - T, let 

Pe = [v,l(e)] r e [~(e), v]7-. 

Then ~l(F, v) is free on C - T ,  the element of tel(F, v) corresponding to e being the 
homotopy class of Pc. 

3. Stars 

3.1. If  v is a vertex of the graph  F, the star of v in F is the set of  edges of  F:  

St(v, F) = { eeE] t(e) =v}.  

The cardinali ty of  St(v, F) is called the valence of v in F. 
A m a p  of graphs  f :  F ~ A ,  yields, for each vertex v of  F, a function 

f~: St(v, F)-~St(f(v),  d). 

If, for each vertex v of  F, fv is injective, we call f an immersion. If  each fv is 
bijective, we call f a covering. If  each fv is surjective, we say f is locally 
surjective. 

For  example,  a reduced pa th  of  length n in F is exactly the same as an 
immers ion  from the s tandard  arc of  length n to F. 

3.2. A pair  of edges (el, e2) of  F is said to be admissible i f t(el)=t(e2)and e 1 
# e 2 .  In  this case, we can identify z(el) to r(e2) , e~ to e2, ~ to ~2, to obta in  a 
graph denoted by F/[e 1 =e2] ,  which we call the result of folding (el,e2) in F. 
This is a part icularly simple instance of the pushout  construct ion:  

(e~, e 2) F 

= F/[e 1 = e2] 

The  condi t ion e 1 :t:e2 is the or ienta t ion condi t ion discussed in 1.2. 

3.3. If  f :  F ~ A  is a m a p  of  graphs, and (e l, e2) is a pair  of  edges of  F such that  
t ( e l )=  z(e2) and f (e l )=f(e2) ,  then (el, e2) is an admissible pair  of  F-edges, and 
we say that  f folds that  admissible pair. In this case, f factors through 
r / [e  I =e2] .  
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Any map which is not an immersion folds some admissible pair (el, e2) 
nontrivially - that is, e 1 + e 2. 

Thus if F is a finite graph and f :  F--,A is a map of graphs, we can find a 
finite sequence of foldings: F=Fo~F~-~F2 . . .~F  . and an immersion F,~A, so 
that the composition of the immersion and the sequence of foldings is equal to 
f. [The sequence of foldings is not unique, but the final immersion is unique.-] 

4. Coverings 

4.1. The theory of coverings of graphs is almost completely analogous to the 
topological theory of covering spaces. The bijectivity of star-maps easily im- 
plies: 

(n) (Path-lift ing):/f  f :  F ~ A is a covering, v a vertex ofF, p a path in A with 
initial vertex f (v), then there exists a unique path p in F with initial vertex v such 
that f~=p.  

(b) (Homotopy-lifting): In (a), if p is a round-trip, then ~ is a round-trip. 
Hence if p~q ,  then P ~ I .  

These are the major lemmas from which we can prove the standard facts, 
namely: 

(e) (General lifting): 
r,u 

////////~ if /. z/ 
O,v g ,A 

I f  f:  F-~A is a covering, g: O ~ A  a map of graphs, and if O is connected, and if 
u, v are vertices ofF, 0 such that f(u)=g(v),  then: there exists ~,: O ~ F  such that 
~(v)=u and f ~ = g ,  if and only if gnl(O , v )c  fnl(F, u); and if ~, exists, it is unique. 

(d) (Existence of coverings): I f  f :  F ~ A  is a covering and u a vertex of F, 
then 

f:  n i (F, u)-~n 1 (A , f  (u)) 
is injective. 

I f  A is connected, v a vertex, S c n l ( A ,  v) a subgroup, then there exists a 
covering f:  F ~ A  where F is connected, with vertex u, such that f ( u ) = v  and 
f n l  (F , u)=S. Any two such coverings are isomorphic (in the standard sense). The 
index of S in nl(A , v) is the cardinality o f f  -l(v). 

4.2. If G is a group, a G-graph F is a graph together with an action of G on the 
left on F by maps of graphs, such that, for all geG and every edge e, ge-~e~. In 
this case, we can define a quotient graph FIG and a quotient map of graphs 
F ~ F / G .  It is easy to show, in general, that F ~ F / G  is locally surjective. 

We say that G acts freely on F, when, whenever v is a vertex of F, geG, and 
gv=v,  then g = l ,  the identity element of G. In this case F ~ F / G  is an immer- 
sion, and hence is a covering. 

The universal cover f:/~-~F, of a connected graph F, is a covering with /~ 
connected and nl(/~) trivial. For v a F-vertex, G=nl (F ,v  ) acts freely, by 
"covering translations", on F, and f is isomorphic to the quotient map .P~ f /G .  
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4.3. If A,B are subgroups of a group G, their join A v B  is the subgroup 
generated by A uB. 

Theorem (Pushout represents join). Suppose that 

F ~1 ~A 1 

~2 1 fll 

A 2 ~ O  

is a pushout diagram, and that F, A 1, A2 are connected. Let u be a vertex of F," 
call the images of u in A1, A2, ~), respectively, vl, v2, w. Then 

(*) 7~ 1 (1~, W) :/31 711 (A1, vi) v/32 ~1 (A 2, v2)- 
Proof Let f :  r  be the covering of O corresponding to the subgroup on the 
right side of (.), which covering exists by 4.1(d). By 4.1(e), there are liftings 
131: A1--*0,/3z: A z ~ O  , preserving base-point Then /ql ~ and f12 c%: F--.r are 
liftings of/~1 cq =/32 c~2, and so, by the uniqueness part of 4.1(e), fll cq =/q2 c~2. 
Using the fact that our diagram is a pushout diagram, there is then a map 
O---,O which is a cross-section o f f :  r This implies that f is an isomor- 
phism of graphs, and that says that (.) is true. 

4.4. Corollary. I f  (el, ez) is an admissible pair of edges in a connected graph F, 
then the folding map F ~ F / [ e  I = e2] is surjective on fundamental groups. 

Proof The pushout diagram for a folding (see 3.2) has the upper left corner 
connected and the lower left corner has trivial fundamental group. Then an 
application of 4.3 proves this result. 

Of course, a more explicit result can be proved. If z(el)+z(e2) , the folding 
map is a rq-isomorphism. If el@e 2 and z(el)=z(e2) , the folding map exactly 
kills one element of a particular free basis of the fundamental group of F. 

5. Immersions 

5.1. Immersions have some of the properties of coverings. Generally, liftings 
may not exist, but if they do, they are unique. Immersions represent subgroups 
more efficiently than do coverings. We now present a series of exercises on 
immersions, pointing out any tricky points. 

5.1. (a) (Preservation of reduced paths). I f  f :  F ~ A  is an immersion of graphs, 
and p is a reduced path in F, then fp  is a reduced path in A. 

This is, in fact, a special case of the fact that the composition of two 
immersions is an immersion. 

(b) (Uniqueness of path-lifting). I f  f :  F ~ A  is an immersion, and p,q are 
paths in F having the same initial vertex, and if  f p  =fq, then p = q. [Induction on 
IPl.] 
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(e) (Uniqueness of lifting). I f  f :  F ~ A is an immersion, 63 a connected graph, 
and gl, g 2 : 6 3 ~ F  are maps of graphs such that fg  1 =fg2 ,  and if there is a vertex 
v of 63 such that gl(v)=g2(v), then gl--g2. 

This follows from (b). 

5.2. Proposition. (Uniqueness of reduced paths). I f  F is any graph, and if p and 
q are reduced, homotopic paths in F, then p = q. 

Proof Let A be the result of identifying all vertices of F to one vertex. The 
identification map f :  F ~ A  is bijective on edges, and therefore is an immersion. 
Then since p~q ,  we have fp  ~fq. Since p and q are reduced, by 5.1(a) both fp  
and fq  are reduced. By the theory of free groups, 2.3, it follows that fp  = fq. By 
5.1(b) and the fact, implied by p~q ,  that p and q have the same initial vertex, 
we see that p = q. 

(Note that this proof appeals to the exterior mathematical world, the word- 
problem in free groups. A proof within graph-theory is possible, using the 
universal cover /~ and facts about trees, such as the uniqueness of reduced 
paths in a tree; however, this seems excessively complex.) 

5.3. Proposition (Injectivity of nl). I f  f :  F---) A is an immersion, and v is a vertex 
ofF, then 

f :  zt 1 (F, v)-"~g I (A,f(v)) 
is injective. 

Proof Let ~rCl(F, v), a+  1. Then c~ is represented by a circuit p based at v, with 
p reduced and IPl > 1. By 5.1(a), fp  is reduced. Since IfPl =IPl > 1, by 5.2 fp  is 
not homotopic to a path of length 0, and so fc~.  1. 

5.4. Algorithm (Finitely generated subgroups). Given a finite set of elements 
{~1 . . . .  ,~,}cz~a(A,u), there is an algorithm that represents the subgroup S of 

I(A, u) generated by {~1,..., ~,}, by an immersion f:  F ~  A, as follows: 
Represent ei by a circuit pl based at u. Let F~ be the disjoint union of n 

standard arcs B 1 .... ,B,, the length of B i being IP~l. Map F 1 into A by 
PlLJ'"UPn" Identify all the initial and terminal vertices of all B~ to a single 
vertex v, obtaining F 2 and a map f2: Fz~A.  In other words, F 2 is a wedge of n 
subdivided circles, mapping the i th circle by p~. 

Then f2 zq (F2, v) = S. 
By 3.3, f2 can be factored through a series of folds and an immersion: 

r ~ - ~ r : ~ . . . - ~ r ~  :~ > A 
folds immersion 

By 4.4, each fold is surjective on Z:l, and so, letting w be the image of v in 

r~, L ~l (r~, w)=S. 

Thus fk is the desired immersion. 
Now, by choosing a maximal tree 

which, by 5.3, yields a free basis of S. 
in Fk, we can find a free basis of ~l(Fk, w), 
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We can see easily whether the folds in this procedure are isomorphisms on 
rc 1 or not (remark after the proof  of 4.4); this will decide if {cq . . . .  , ~,} is a free 
basis of S. As we shall see later in 7.6, it is easy to see whether or not S has 
finite index in r~(A,u)  in case A has only one vertex, and it is easy to 
determine what that finite index is. 

5.5. Theorem (Pullback of immersions represents intersection). Let 

Fz f 2 --' A 

be a pullback diagram of  graphs. Suppose that f l  and f2 are immersions. Let v l, v 2 
be vertices in F1, F a such that f l ( v O = f 2 ( v 2 ) = w ;  let v 3 be the corresponding 
vertex in F a. Define f 3 = f l g l = f z g 2 : F3 ~ A, and define 

Si=fi~Zl(Fi, vi) for i =  1, 2, 3. 

(These are subgroups of  rca(A , w).) 
Then 

$3=S1(5S2. 
Proof  It is clear from f l  gl = f z g 2  that S 3 is contained in S 1 c~S 2. To show the 
reverse inclusion, let ~ES 1 c~S 2. Then there are reduced circuits PI,P2 in F~, F z 
based at v~,v z such that fa Px and f2P2 belong to the homotopy class c~. By 
5.1(a), both  f l  Pl and f2 Pz are reduced paths, and so by 5.2, f l  P1 = f 2  Pz. By the 
pullback property, there exists a path P3 in F 3 such that p l = g ~ p 3  and P2 
=g2P3, and P3 is a circuit based at v 3. Thusf3P3 represents an element of $3, 
and represents ~. 

5.6. Corollary (Howson's theorem [5]). I f  S 1 and S 2 are f ini te ly  generated 
subgroups o f  a free group F, then S 1 c~ S 2 is f ini te ly  generated (and a f ree  basis o f  
S 1 c~S 2 can be determined by an easy algorithm). 

Proof  Represent F as nl(A), where A is a graph with one vertex. Using 5.4, 
represent S 1 and S 2 by immersions f l  :FI-~A, f2: F2~A,  where F 1 and F 2 are 
connected finite graphs. Construct the pullback F 3 by 1.3; clearly, F 3 is a finite 
graph, and by 5.5, a component  of F 3 (containing v3) represents S a c~S z. It is 
easy to check that f3: F3~A is an immersion, and therefore a finite free basis of 
S 3 can be determined by choosing a maximal tree in that component  of F 3. 

5.7. (a) As Gersten has shown, [2], a careful check of Euler characteristics 
proves H. Neumann 's  inequality [8] on the rank of Sa c~$2: If S~ c~S 2 is non- 
trivial, then 

r(S, c~$2)-  1 < 2 .  ( r (S1)-  1)-(r(S2)-  1). 

H. Neumann's  conjecture that "2"  can be replaced by "1" seems to be a much 
more difficult combinatorial problem. Perhaps these techniques may clarify 
this question. 
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(b) The fact that the pullback F 3 has only a finite number of components 
leads to this curious result: If  S 1 and S 2 are finitely generated subgroups of a 
free group F, then, as ~ varies over F, the subgroups {$1 c~eS2c~ -1} belong to 
only a finite number of conjugacy classes of subgroups of F. [To see this, 
~S 2 e-1  is represented by F 2 with perhaps an arc attached by one end-vertex, 
and a change of basepoint v 2. The pullback then is changed by perhaps adding 
several arcs, each attached by one end-vertex or not at all attached. Any 
component  of the pullback, representing S~c~c~S2ct -~, is either an arc, repre- 
senting {1}, or a component of the original pullback with some hairs growing 
on it; in the latter case the 
represented by a component  
to Imrich I-6]. 

represented subgroup is conjugate to the group 
of the original pullback F3. ] This theorem is due 

5.8. For  further reference, we discuss translations of immersions. 
A translation of a map of graphs f :  F ~ A  is a map g : F ~ F  which is an 

isomorphism of graphs and for which f g = f  The set of all translations of f 
forms a group G(f)  which acts on F, and f factors through the quotient 
r-,r/G(f) 
Proposition. 1f f :  F-~ A is an immersion, and F is connected, then G( f )  acts freely 
on ft. 

Proof This is a consequence of the definition of "acts freely" in 4.2, and the 
uniqueness of lifting, 5.1(c). 

6. Marshall Hall's Theorem 

6.1. Theorem. Let f :  F-~A be an immersion of graphs. Suppose that d has only 
one vertex, and that F has only finitely many vertices. Then there exists a graph 
F' containing F, such that F ' - F  consists only of edges, and there exists a map 
f ' :  F'--*A extending f, such that f '  is a covering. (And, if d is a finite graph, the 
proof shows how to effectively construct and enumerate all such extensions F',f ' .)  

Proof. Let V be the set of vertices of F. Choose an orientation (9 of d. For each 
ee(9, define 

Re={(u , v ) e V x  VI there exists an edge e 1 of 

F such tha t f (eO=e,  t ( e0=u ,  z(eO=v }. 

Because f is an immersion, the two coordinate projections R e ~ V a r e  injective. 
Thus R e is a bijection of one subset of V onto another; since V is finite, that 
bijection can be extended to all of V, so that there exists Sec  V x V such that 
R e c S  e and S e is a bijection V~V. 

Using a choice of S e for all e~(9, we construct F'  and f ' ,  as follows. 
The set of vertices of F '  is V. 
The set of edges of F' is E', defined thus: 

E'={(u,v,e)lu,  v~V,e and edge of A; if e~(9, then 
(u, v)eSe; if ~ (9 ,  then (v, u)eSo}. 
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Define, for e =(u, v, e)eE', ~=(v, u, 7), and t(e) =u. 
Define f ' :  F'---,A by taking V to the unique vertex of A, and f ' (e)=e, for 

e=(u,v,e)eE'. 
Embed F into F'  by a map a: F ~ F '  as follows: For  a vertex v, a(v)=v; for 

an edge e 1 of F, a(el)=O(el) , z(el) , f (el)  ). 
The proof that this all works is left as an exercise. 

6.2. Example:  Let F be free on {x, y}. Then there exist exactly 36 subgroups S 
of index 5 in F for which the following form a system of representatives of the 
right cosets of S in F: {1, x, xy, x y x  -~, x y x  -1 y - l } .  

To see this, represent F as the fundamental group of A : 

x(; y 
Map the standard arc F of length 4 into A thus: 

x y 

0 x 1 y 2 3 4 

This is an immersion f : F ~ A .  For  the edge x, the partial bijection R x says: 
0~1 ,  3--,2; while Ry says: 1~2,  4-*3. Each of these can be extended to total 
bijections S~ and Sy in 3 ! =  6 ways, and so there are 6.6 possible constructions 
of F', each yielding (base-point = 0) one of the subgroups under consideration. 

6.3. Corollary (Hall [41, Burns [11). Let cq, ..., c~k, ~1, ..., Be be elements of  a 
free group F. Let S be the subgroup of F generated by {c~ 1 . . . .  , c~k}. Suppose that 
~i~S for i= 1 . . . .  , ~. Then there exists a subgroup S' of finite index in F, such that 
S c S ' ,  [}d~S' for i = 1 , . . . , / ,  and there exists a free basis of S' having a subset 
which is a free basis of S. 

Proof. Represent F as nx(A ), where A has only one vertex. Let F~ be a wedge of 
circles and arcs, subdivided appropriately, and f ~ : F ~ A  a map, so that the 
circles in F~, under f t ,  represent c~i and the arcs in F~ represent ]~. Thus, with 
appropriate base-point v~, 

A ~l(r~,vO=s. 

Since F~ is a finite connected graph, by 3.3 f l  can be factored through a series 
of folds and an immersion f :  F--*A. By 4.4, fnl(F,  v)=S, and since /~ir the 
image of the i th arc of F~ in F is not a circuit. 

Now apply 6.1 to f : F ~ A ,  extending f to a covering f ':F'--*A, without 
adding new vertices. We define S '=f '~ l (F ' , v ) .  The index of S' in F is the 
number  of vertices of F. Clearly S c S'; the paths in F which represent/~i - the 
images of the arcs of F~ - are not circuits, and so/~1r A maximal tree T o f  F 
is also a maximal tree of F'; using this, we find a free basis of n~(F', v) of which 
a subset is a free basis of nx(F , v). 
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7. Core Graphs 

7.1. Every connected graph with non-trivial fundamental group contains a core 
where the fundamental group is concentrated, and the original graph consists 
of this core with various trees hanging on. 

In the case of a finite graph F, we can obtain the core of F by a process of 
clipping exterior hairs one by one. Thus, if F has no vertex of valence 1, F is 
its own core. If  F has a vertex v such that there is a unique edge e with v = t(e), 
then by removing v, e, and ~, we obtain a smaller graph U. A finite number of 
such changes yields the core of F. 

It is more elegant, however, to give an intrinsic definition. 

7.2. A cyclically reduced circuit in a graph F is a circuit p = e  1 ez. . .e, ,  which is 
reduced as a path, and for which el =t=~,. This is the same as an immersion of a 
subdivided circle into F. 

A graph F is said to be a core-graph if F is connected, has at least one 
edge, and every edge belongs to at least one cyclically reduced circuit. 

If  F is a connected graph with non-trivial fundamental group, an essential 
edge of F is an edge belonging to some cyclically reduced circuit. The core o f F  
consists of all essential edges of F and all initial vertices of essential edges. We 
sometimes refer to the process of finding the core of F as "shaving off trees." 

7.3. Some elementary exercises: 
(a) A finite connected graph F is a core-graph if and only if the valence of 

each vertex is at least two. Thus the process of clipping off hairs described in 
7.1, yields the core of any finite connected graph with non-trivial fundamental 
group. 

(b) I f  F is a connected graph with non-trivial fundamental group, and F' is 
the core of F, then F' is a core-graph. I f  v is a vertex of F', then the inclusion 
~zl(F' , v ) ~ z l ( F  , v) is an isomorphism. 

7.4. If S is a subgroup of a group G, we say that S c G  satisfies the Burnside 
condition when, for every geG, there exists some positive integer n, such that 
g"eS. Clearly if S satisfies the Burnside condition in G, then so does any 
conjugate subgroup. 

7.5. (a) Let f :  F ~ A  be a finite-sheeted covering of connected graphs, v a vertex 
of F. Then fTr 1 (F, v) = re1 (A, f (v)) satisfies the Burnside condition. 

(b) Conversely: Let f:  F--*A be an immersion of connected graphs. Suppose 
that A is a core-graph; v a vertex of F, fr~l(F,v)cTza(A,f(v)) satisfies the 
Burnside condition. Then f is a covering. 

Proof (a) is clear, because subgroups of finite index satisfy the Burnside 
condition. 

To prove (h), we must show f is locally surjective. Let w be a vertex of F 
and e an edge of A with f(w)=l(e).  Since the Burnside condition is preserved 
under conjugation, and F is connected, then frh(F, w)crq(A , f (w) )  satisfies the 
Burnside condition. Since A is a core-graph, there is a cyclically reduced circuit 
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p in A whose first term is e. By the Burnside condition, there exists n such that 
the homotopy class of pn belongs to fn l (F , w). Since p is cyclically reduced, p" is 
reduced. There is a reduced circuit q of F based at w, such that fq~p"; fq is 
reduced since f is an immersion (5.1(a)), and so fq=p" by 5.2. Then the first 
term of q is an edge e 1 of F with t(el)=W andf(el)=e. 

7.6. Remark. This proposition finishes the algorithmic determination, promised 
in 5.4, of whether a given finitely generated subgroup of a free group is of finite 
index. (We could also have used Marshall Hall's theorem to see this.) Repre- 
sent the subgroup by an immersion f :  F~A,  where F is finite and A is a one- 
vertex graph (and hence a core-graph); i f f  is a covering, then the subgroup is 
of finite index equal to the number of vertices of F. I f f  is not a covering, then 
7.5 shows the subgroup does not satisfy the Burnside condition, and so is of 
infinite index. 

7.7. We can now sketch Gersten's proof of H. Neumann's bound on the rank 
of S 1 c~S a (see 5.7). We represent the ambient free group by the graph 

We represent S 1 and S 2 by immersions F1,F2~A , and the intersection S lc~S 2 
and by a component of the pullback F 3. If SickS 2 is non-trivial, we can 
conjugate the situation within n(A) so as to bring the base-point of F 3 into the 
core F~ of the component representing S 1 ~ S  2. Shaving the trees off of F~ and 
F 2 to get their cores F~' and F2', we get a commutative square: (Note that under 
an immersion A ~ B ,  the core of A maps into the core of B.) 

J'3 f l  

Here, fx and f2 are immersions, F 3' is a subgraph of their pullback, and all these 
graphs are finite core-graphs. 

Let p(X) denote the number of vertices of valence 3 in X. An elementary 
computation using Euler characteristics shows that, for a finite core-graph X 
in which all vertices have valence <3, p(X)=2(r(lrl(X))-I ), where r(G) is the 
rank of the free group G. 

From the pullback nature of the diagram, we easily conclude that 

p (r~') __ p (r,')  9 p (r~). 

Putting these facts together with 7.3(b), we get the H. Neumann bound. 

7.8. Greenberg 1-3] proved some theorems on Fuchsian groups, from which one 
can deduce the following remarkable result, which I shall prove using graph- 
theory. 
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Theorem. Let S 1 and S 2 be finitely generated subgroups of a free group F. 
Suppose that S l ~ S  2 is of finite index both in S 1 and in S 2. Then S, n S  2 is of  
finite index in the join S I v S 2. 

Proof As in the sketch of Gersten's proof of H. Neumann's inequality in 7.7, 
we can represent the situation by a commutative square 

g l  r~ --- q 

r~ _-- LI 
L 

In this picture, f l  and f2 are immersions, F 3 is a subgraph of the pullback; 
F1,F2, and F 3 are finite core-graphs; f 3 = f l g 2 = f 2 g 2 ;  v 3 is a vertex of F3, v a 
and v 2 are the images of v 3 in F 1 and F2; w=fl(vO=fz(V2)=f3(v3) .  The group 
F = re1 (A, w), and 

S, =f(F~, v,) for i=  1, 2, 3, 

$ 3 = S 1 ( 3 S  2. 

By 7.5(h), since S 3 is of finite index in both S 1 and $2, it follows that both g~ 
and gz are coverings. 

Let r: F3-+F3 be the universal covering. Splicing this into our diagram: 
~ 

~ ~  F3 gl 

g2 

F 2 ~ A 

We see that g'a and g'z are themselves universal coverings, and that the group 
G(~a) of covering translations of gl can be identified with $1, and likewise 
G(~,2)=S2. ~ 

Now f3 is an immersion, and so the composition F 3 - v ~ F 3 ~ 7 , A  is an 

immersion, denoted by h=f3r .  Consider aeG(~l). Then a:/~3---,/~3 is an auto- 
morphism of graphs such that ~1a=~1;  that is, gxro-=glr ;  hence f x g l r a  
= f l g t  r, o r f 3 r a = f 3 r ,  or ha=h.  Thus a is a translation of the immersion h. 
Similarly, the covering translations of g2 are translations of h. 
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Let K be the group of translations of h generated by G(~I)wG(~2). Then 
F3/K fits into a commutative diagram: 

r ~  t2 :-- r3/~: \ 

(This construction is a device to obtain the pushout ~ / K  of gl and g2') 
Now K acts freely on /~3, by 5.8. Thus t 3 is a covering. Since gl is a 

covering, it follows that t 1 is a covering. (Similarly t 2 is a covering). Because F~ 
is a finite graph, t I is a finite-sheeted covering. This shows that S~ is of finite 
index in srcl(F3/K), which contains both S 1 and $2; and so S 1 is of finite index 
in S 1 v S  2. With the fact that S I ( ' I S  2 is of finite index in S~, this shows that 
Slc~S 2 is of finite index in $1 v S  2. 

8. Comments 

8.1. The argument in 7.8 can be done within the topological category. There is 
an esoteric theorem, which may be of some interest. By an immersion, we 
would mean a locally injective, continuous function. A translation a o f f :  A ~ B  
would be a homeomorphism A ~ A  such that f a = f  The analogue of 5.8 would 
say that if A is a connected Hausdorff  space and f :  A ~ B  is an immersion, then 
the group of translations of f a c t s  freely, properly discontinuously on A. The 
analogue of the argument of 7.8 would say: 

Let 
A gl ~B 1 

g2 J ft 
B 2 ~  C 

be a commutative diagram; f l , f2  immersions; A a subspace of the pullback; 
gl, g2 coverings (a covering would be a local product with discrete fibre). 

Let 
A ,B I gl 

B 2 ~  D 
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be  the topo log ica l  pushout .  T h e n  if A , B  1, B 2 are connec ted ,  a n d  A is H a u s -  
dorff, local ly pa th -connec ted ,  a n d  semi - loca l l y - l - connec t ed ,  t hen  h 1 a n d  h 2 are  
coverings.  

(I am n o t  sure  I have  all the topo log ica l  hypotheses  exact ly right.) 

8.2. A n  a u t o m o r p h i s m  of a free g roup  c an  be descr ibed  by m e a n s  of a 
s ubd i v i s i on  of  a g raph  a n d  a sequence  of  foldings.  I w o n d e r  if this w o u l d  
clarify va r ious  th ings  a b o u t  a u t o m o r p h i s m s ,  such as M c C o o l ' s  work  [7].  

8.3. The  categor ical  v i ewpo in t  seems to be  very fruitful in  this subject .  I w o n d e r  
if "dif ference ke rne l s"  or  equal izers ,  of in ject ive  h o m o m o r p h i s m s  of free g roups  
have  a g raph- theore t i c  in t e rp re ta t ion .  F o r  ins tance ,  I migh t  genera l ize  a con-  
j ec tu re  of Scott ' s  as follows: Suppose  c~, fl: A ~ B  are h o m o m o r p h i s m s  of f initely 
gene ra t ed  free groups ,  a n d  tha t  c~ is a m o n o m o r p h i s m .  Def ine  

O( c~, ~) = { x e AIc~( x) = fi(x)}. 

The  con jec tu re  is tha t  D(~,fl) is finitely genera ted .  Pe rhaps  the con jec tu re  
s h o u l d  be for the  case tha t  b o t h  e a n d  fl are  monic .  It  is easily seen to be  false 
w h e n  nei ther  is a s sumed  to be injective.  
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