
MATH 2443–008 Calculus IV Spring 2014
Notes on Stokes’ Theorem

1. Equation in Stokes’ Theorem. Read the textbook for the conditions on F, S and ∂S.∮
∂S

F · dr =

∫∫
S

(∇× F) · dS (1)

2. Stokes implies Green. Let F = 〈P,Q〉 be a vector field on a domain D with boundary C
satisfying the conditions of Green’s Theorem.

• Consider F = 〈P,Q, 0〉 as a vector field in 3–dimensions, where P and Q are thought of as
functions of (x, y, z) which do not explicitly involve the variable z. A computation gives
∇× F = 〈0, 0, Qx − Py〉.
• The region D can be viewed as a parametric surface in 3–dimensions, by r(x, y) = 〈x, y, 0〉.

We find that dS = k̂dxdy, and so (∇× F) · dS = [Qx − Py]dxdy.

• Thus, the left hand side of equation (1) becomes∮
∂S

F · dr =

∮
∂S

〈P,Q, 0〉 · dr =

∮
C

Pdx+Qdy =

∮
C

F · dr

and the right hand side becomes∫∫
S

(∇× F) · dS =

∫∫
D

[Qx − Py]dxdy

Combining these two gives Green’s Theorem.

3. Geometric definition of Curl. Let F be a smooth vector field. Let û be a unit vector based
at a point P in space, and let Ct denote the circle of radius t centered on P in the plane normal
to û. The circle Ct is oriented in a right hand fashion with respect to û; this circle is the
boundary of a disk Dt centered at P . Then

û · (∇× F)(P ) = lim
t→0

∮
Ct

F · dr
πt2

(2)

We see this by replacing the line integral in the numerator by a surface integral over Dt and
noting that dS = ûdS.

lim
t→0

∫∫
Dt

(∇× F) · dS
πt2

= lim
t→0

∫∫
Dt

û · (∇× F) dS

πt2
= û · (∇× F)(P )

Now equation (2) means that the projection of (∇ × F)(P ) in the û direction is equal to the
(limit of the) circulation of F about P in the plane perpendicular to û per unit area.

Note that the maximum circulation of F about the point P occurs in the plane with normal
vector (∇× F)(P ).



4. If F = ∇×G then
∫∫

S
F · dS = 0 for every closed surface S. Here is the idea. First, cut

a disk out of the surface S by cutting along a suitable simple closed curve C. Call the disk S1

and the remainder S2. It the boundary of S1 is C, then the boundary of S2 will be −C (the
curve C with the opposite orientation).

Stokes’ Theorem applied to the vector field G and the surface S1 gives that∫∫
S1

F · dS =

∫∫
S1

(∇×G) · dS Stokes
=

∮
∂S1

G · dr =

∮
C

G · dr

and, applied to the vector field G and the surface S2 gives that∫∫
S2

F · dS =

∫∫
S2

(∇×G) · dS Stokes
=

∮
∂S2

G · dr =

∮
−C

G · dr = −
∮
C

G · dr

Adding, we get ∫∫
S

F · dS =

∫∫
S1

F · dS +

∫∫
S2

F · dS = 0

Alternative Method. You could also think of this as being an immediate consequence of Stokes’
Theorem as follows.∫∫

S

F · dS =

∫∫
S

(∇×G) · dS Stokes
=

∮
∂S

G · dr = 0

because the surface S is closed, and so has empty boundary ∂S = ∅. Therefore the last integral
is over an empty curve and so is automatically equal to 0. In you don’t like this reasoning, you
can still use the argument given in the paragraph above.

5. Remark. The Divergence Theorem almost gives the result above. If F = ∇ × G, then
∇·F = ∇· (∇×G) = 0. Therefore, if the closed surface S is the boundary of a region E where
F and its divergence are defined, then the Divergence Theorem gives∫∫

S

F · dS =

∫∫∫
E

(∇ · F) dV =

∫∫∫
E

0 dV = 0

But it may happen that F and its divergence is not defined over all points of E. In this case,
the Divergence Theorem will not apply. However, the argument in item 4 still works in this
case.

For example, the vector field

F =
〈x, y, z〉

(x2 + y2 + z2)3/2
(x, y, z) 6= (0, 0, 0)

safisfies

• F and ∇ · F are not defined at (0, 0, 0).

• ∇ · F = 0

• Let S denote the unit sphere x2 + y2 + z2 = 1. Then dS = 〈x, y, z〉dS and∫∫
S

F · dS =

∫∫
S

〈x, y, z〉
(x2 + y2 + z2)3/2

· 〈x, y, z〉dS =

∫∫
S

12

13
dS = 4π

• Therefore, by item 4 above, F is not the curl of another vector field.


