
MATH 2443–008 Calculus IV Spring 2014
Three Versions of the Divergence Theorem

In this note we will establish versions of the Divergence Theorem which enable us to give limit
formulations of div, grad, and curl.

1. At various places in this note we will be taking integrals of vector fields component by compo-
nent. If F = 〈P,Q,R〉 and S is a surface, then∫∫

S

F dS =

∫∫
S

〈P,Q,R〉 dS =

〈∫∫
S

P dS,

∫∫
S

QdS,

∫∫
S

RdS

〉
There is a similar expression for triple integrals over a region E.

2. The Divergence (Usual) Version. The basic version of the Divergence Theorem is in your
textbook. Given a vector field F defined on an open domain containing the region E with
boundary ∂E (see your textbook for the extra assumptions made about F and about ∂E), then∫∫

∂E

F · dS =

∫∫
∂E

F · n̂ dS =

∫∫∫
E

∇ · F dV

This gives the following limit formulation of ∇ · F (which shows that ∇ · F is a geometric
quantity; independent of the original Cartesian coordinate system definition).

∇ · F = lim
diam(E)→0

∫∫
∂E

F · n̂ dS
Vol(E)

(1)

3. The Gradient Version. Given a function f defined on an open domain containing E as in
item 2 above, then ∫∫

∂E

f n̂ dS =

∫∫∫
E

∇f dV

As in 2 above, this gives the following limit formulation of ∇f . This shows that ∇f is a
geometric quantity (independent of the original coordinate system definition).

∇f = lim
diam(E)→0

∫∫
∂E
f n̂ dS

Vol(E)
(2)

4. The Curl Version. Given a vector field F defined on an open domain containing E as in item
2 above, then ∫∫

∂E

n̂× F dS =

∫∫∫
E

∇× F dV (3)

As in 2 above, this gives the following limit formulation of ∇ × F. This shows that ∇f is a
geometric quantity (independent of the original coordinate system definition).

∇× F = lim
diam(E)→0

∫∫
∂E

n̂× F dS

Vol(E)



5. Proof of Gradient Version. Let n̂ = 〈n1, n2, n3〉 be the unit outward pointing normal vector
to the surface ∂E. Then∫∫

∂E

f n̂ dS =

∫∫
∂E

〈fn1, fn2, fn3〉 dS

=

〈∫∫
∂E

fn1 dS,

∫∫
∂E

fn2 dS,

∫∫
∂E

fn3 dS

〉
=

〈∫∫
∂E

〈f, 0, 0〉 · n̂ dS,
∫∫

∂E

〈0, f, 0〉 · n̂ dS,
∫∫

∂E

〈0, 0, f〉 · n̂ dS
〉

=

〈∫∫∫
E

∇ · 〈f, 0, 0〉 dV,
∫∫∫

E

∇ · 〈0, f, 0〉 dV,
∫∫∫

E

∇ · 〈0, 0, f〉 dV
〉

=

〈∫∫∫
E

fx dV,

∫∫∫
E

fy dV,

∫∫∫
E

fz dV,

〉
=

∫∫∫
E

〈fx, fy, fz〉 dV

=

∫∫∫
E

∇f dV

6. Proof of Curl Version. Let n̂ = 〈n1, n2, n3〉 be the unit outward pointing normal vector to
the surface ∂E. Then∫∫

∂E

n̂× F dS =

∫∫
∂E

〈n1, n2, n3〉 × 〈F1, F2, F3〉 dS

=

∫∫
∂E

〈n2F3 − n3F2, n3F1 − n1F3, n1F2 − n2F1〉 dS

=

〈∫∫
∂E

(n2F3 − n3F2) dS,

∫∫
∂E

(n3F1 − n1F3) dS,

∫∫
∂E

(n1F2 − n2F1) dS

〉
=

〈∫∫
∂E

〈0, F3,−F2〉 · n̂ dS,
∫∫

∂E

〈−F3, 0, F1〉 · n̂ dS,
∫∫

∂E

〈F2,−F1, 0〉 · n̂ dS
〉

=

〈∫∫∫
E

∇·〈0, F3,−F2〉dV,
∫∫∫

E

∇·〈−F3, 0, F1 〉dV,
∫∫∫

E

∇·〈F2,−F1, 0〉dV
〉

=

〈∫∫∫
E

F3y − F2z dV,

∫∫∫
E

F1z − F3x dV,

∫∫∫
E

F2x − F1y dV

〉
=

∫∫∫
E

〈F3y − F2z, F1z − F3x, F2x − F1y〉 dV

=

∫∫∫
E

∇× F dV

7. Remark 1. The proofs above are for the most part just “definition chasing”. There is a key
step in each proof where one applies the usual Divergence Theorem to each of the components
of a vector field; the components are written as surface integrals, and the Divergence Theorem
converts them into volume integrals.

8. Intuition about div. Let P be a point in 3-d space, and let Sr denote the sphere of radius r
about P . The divergence of a vector field F at the point P is the (limit as r → 0 of the) net
flux of F out of the sphere Sr per unit volume.



9. Intuition about grad. As before, let P be a point in 3-d space, and let Sr denote the sphere
of radius r about P . Then the gradient of the function f at the point P is the (limit as r → 0 of
the) f–weighted vector sum of the outward pointing unit normal vectors to Sr per unit volume.

We already have a good intuition about grad from class notes. It is a nice exercise to see that
our old intuition (for example, that ∇f at the point P points in the direction of maximum rate
of increase of f at P , and is perpendicular to the level surface of f through P ) makes sense
from the f–weighted sum of unit normal vectors formulation. As r → 0 the level surfaces of f
nearby P look more and more like parallel planes cutting through the sphere Sr.

Can you see why the f–weighted sum of unit normal vectors to Sr should end up being per-
pendicular to the level surface for f through P , and why it should point in the direction of
increasing f?

10. Intuition about curl. As in the previous two cases, let P be a point in 3-d space, and let
Sr denote the sphere of radius r about P . The curl of the vector field F at the point P is the
(limit as r → 0 of the) vector sum of n̂× F over the sphere Sr per unit volume.

Let’s think further about what this is measuring. For example, if F is perpendicular to the
sphere Sr at some point then n̂× F will be zero at this point. In general, we can write F at a
point of Sr as a sum

F = Fn + Ft

of a component which is normal to Sr and a component which is tangential to Sr. Crossing
with n̂ gives

n̂× F = n̂× Fn + n̂× Ft = n̂× Ft

So n̂×F is only picking out the components of F which flow along the sphere Sr, or which flow
(or circulate) around the point P . These tangential components of F are rotated (kept tangent
to the sphere) through π/2 (the effect of crossing with n̂) and then summed over Sr.

One way to visualize this is to think of the tangential component Ft vector field as a wind
velocity field on a globe. Every wind vector is rotated π/2 counterclockwise and then we take
the vector sum. If there is a predominant sense of wind circulation on this globe (e.g., from west
to east), then the vector sum of n̂×Ft will be perpendicular to this (in a northerly direction).

11. Remark 2. Q31 in section 16.9 of the course textbook asks you to derive the gradient version
of the Divergence Theorem. There is a lovely application of this to Archimedes Principle given
in Q32.

12. Remark 3. We can use the coordinate-free formulations of div, grad and curl to obtain
intuitions about their formulas in general orthogonal curvilinear coordinate systems. Let us
develop the expression for the divergence of the vector field

F = F1û1 + F2û2 + F3û3

in the orthogonal curvilinear coordinate system r(u1, u2, u3). Recall from our handout on
orthogonal curvilinear coordinates, that mutually orthogonal unit vectors are defined by

ûi =
1

hi

∂r

∂ui

where the hi are the scale factors

hi =

∣∣∣∣ ∂r∂ui
∣∣∣∣ .



The component functions Fi of F are functions of (u1, u2, u3).

Equation (1) expresses ∇ · F as a limit of a ratio of a surface integral to a volume

∇ · F = lim
diam(E)→0

∫∫
∂E

F · n̂ dS
Vol(E)

We will use this limit expression to compute ∇ · F at the point P = r(u1, u2, u3). Start with
the box (cartesian product of three intervals) in parameter space

[u1, u1 + ∆u1]× [u2, u2 + ∆u2]× [u3, u3 + ∆u3]

This gets sent to a curvilinear box E with boundary ∂E in xyz-space. This is sketched below.

We need to compute the surface integral
∫∫

∂E
F · n̂ dS. This becomes a sum of six surface

integrals; one for each of the six faces of the box E. We will focus on the front and back faces
which are perpendicular to the û1 directions. These are shaded in the figure.

The outward pointing normal to the front face (which we denote by S1) is û1|(u1+∆u1,u2,u3).
Likewise, the outward pointing normal vector to the back face (which we denote by S2) is
−û1|(u1,u2,u3). Note the sign change. Taking the dot product of these normals with the vector
field F will select the first component F1. Thus we get∫∫

S1

F · n̂ dS ≈ (F1h2h3)|(u1+∆u1,u2,u3)∆u2∆u3

and ∫∫
S2

F · n̂ dS ≈ −(F1h2h3)|(u1,u2,u3)∆u2∆u3



Now we divide by the volume of E and take a limit as ∆ui → 0. This gives a contribution to

∇ · F = lim
diam(E)→0

∫∫
∂E

F · n̂ dS
Vol(E)

from the first two faces S2 and S2 of the box as follows:

lim
∆ui→0

∫∫
S1
F · n̂ dS +

∫∫
S2
F · n̂ dS

h1h2h3∆u1∆u2∆u3

= lim
∆ui→0

[(F1h2h3)|(u1+∆u1,u2,u3) − (F1h2h3)|(u1,u2,u3)]∆u2∆u3

h1h2h3∆u1∆u2∆u3

= lim
∆u1→0

[(F1h2h3)|(u1+∆u1,u2,u3) − (F1h2h3)|(u1,u2,u3)]

h1h2h3∆u1

=
1

h1h2h3

∂(F1h2h3)

∂u1

Similarly, the surface integral over the two faces with normal vectors û2 gives a contribution of

1

h1h2h3

∂(F2h1h3)

∂u2

and the surface integral over the two remaining faces (with normal vectors û3) gives

1

h1h2h3

∂(F3h1h2)

∂u3

Combining all three terms gives the usual formula for the divergence

∇ · F =
1

h1h2h3

[
∂(F1h2h3)

∂u1

+
∂(F2h1h3)

∂u2

+
∂(F3h1h2)

∂u3

]

We now have an intuition about this expression. The 1
h1h2h3

term comes from the volume of
a curvilinear box; the derivative of terms like (F1h2h3) come from the fact that h2h3 gives a
surface area of a curvilinear face of the box, and the partial derivative comes from taking the
difference of these expressions on front and back faces of the box.

You may worry about the fact that the point r(u1, u2, u3) was not strictly inside the box E,
but was a corner point. If you wish, you may surround the point by 8 such little curvilinear
boxes (obtained by replacing various +∆ui terms by −∆ui terms) and then get 8 times the
expression above for the divergence. But you will be dividing by 8 times the volume too.

One can develop similar intuitions about the expressions for grad and curl. For example, the
book, Div, Grad, Curl, and All That: An Informal Text on Vector Calculus, (Fourth Edition),
by H. M. Schey, gives a friendly treatment of these ideas.


