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We show that the set éd&~dimensional isoperimetric exponents of finitely presented
groups is dense in the interval ,[&) for k > 2. Hence there is no higher-
dimensional analogue of Gromov’s gap 2} in the isoperimetric spectrum.
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1 Introduction

Dehn functions of groups have been the subject of intense activity over the past two
decades. The Dehn functioffx) of a groupG is a quasi-isometry invariant which
describes the best possible isoperimetric inequality that holds in any geometric model
for the group. Specifically, for a givex, §(X) is the smallest numbeX such that every
null-homotopic loop of length at mostbounds a disk of areA or less. One defines
length and area combinatorially, based on a presentation 2—complé& fand the
resulting Dehn function is well defined up to coarse Lipschitz equivalend@.isfthe
fundamental group of a closed Riemannian manitdidthen ordinary length and area

in M may be used instead, and one obtains an equivalent function. (This seemingly
modest but non-trivial result is sometimes called the Filling Theorem; see Bri@kon [

or Burillo and Taback9] for a proof.)

Due in large part to the work of Birget, Rips and Sag@d][we now have a fairly
complete understanding of which functions are Dehn functions of finitely presented
groups. In the case of power functions, one definessberimetric spectrurno be

the following (countable) subset of the line:

IP = {«a€[1,00) | f(X) = x“ is equivalent to a Dehn functign

We know from Brady and Bridsord] that the isoperimetric spectrum has closure
{1} U [2, c0) and, from Brady, Bridson, Forester and Shanl&y that it contains all
rational numbers in [2). Moreover, in the range (4¢), it contains (almost exactly)
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those numbers having computational complexity below a certain thresbjldThe

gap (1 2) reflects Gromov's theorem to the effect that every finitely presented group
with sub-quadratic Dehn function is hyperbolic, and hence has linear Dehn function.
Several proofs of this result are known: see Gronid},[Ol’ shanski[20], Papasoglu

[21] and Bowditch B].

By analogy with ordinary Dehn functions, one defineskhdimensional Dehn function
6®(x), describing the optimat—dimensional isoperimetric inequality that holdsGn
Givenx, 6®(x) is the smallesV such that everk—dimensional sphere of volume at
mostx bounds aK+ 1)—dimensional ball of volum¥ or less. One uses combinatorial
notions of volume, based on a choderconnected model fo&. Again, up to coarse
Lipschitz equivalencej®(x) is preserved by quasi-isometries, by Alonso, Wang and
Pride ], and in particular does not depend on the choice of modeGfor

Precise details regarding the definitions8f (x) are given irSection 2 Nevertheless, it

is worth emphasizing here that we are filling spheres with balls, which is quite different
from filling spheres with chains, or cycles with chains (the latter of which leads to the
homological Dehn functign It turns out that we do indeed need to make use of other
variants (namely, thetrong Dehn function- seeSection 2, but for us the primary
object of most immediate geometric interest is the Dehn function as described above.

In this paper we are concerned with the following question: what is the possible
isoperimetric behavior of groups, in various dimensions? For each positive ifkeger
one defines th&—dimensional isoperimetric spectrum

PO = {a e[1,00) | f(X) = x* is equivalent to &—dimensional Dehn functioh

Until recently, relatively little was known about #®, especially wherk > 3. A
few results concerning (P were known. Alonso, Bogley, Burton, Pride and Wang
[1, 27, 26] have shown that I®) contains infinitely many points in the interval [ 2),
and they located various lower and upper bounds throughout)2 Also Brady and
Bridson ] and Bridson ] have shown that I®) N [3/2, 2) is dense in [32,2) and
that 23 € IP@.

The recent paper of Brady, Bridson, Forester and Shafkasfablished that I is
densein [H %, oo) and contains all rational numbers in this range. The endpein& 1
corresponds to the isoperimetric inequality represented by spheres in Euclidean space.
The main purpose of the present paper is to address the sub-Euclidean r,a]ng%ll

and establish the existence of isoperimetric exponents throughout this interval, for
k> 2.
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To state our results we need some notatiorA i§ a non-singulan x n integer matrix,
let Ga denote the ascending HNN extensior#Zdfwith monodromyA. Our first result
is the following.

Theorem 1.1 Let A be a 2 x 2 integer matrix with eigenvalues A\, . such that A >

1> p and Ay > 1. Then the 2—dimensional Dehn function of Gp is equivalent to
x2+109, (1)

In Section Ave show that the exponents arising in the theorem are dense in the interval
(1,2). Thus, roughly half of these groups have sub-Euclidean filling volume for
2—spheres, occupying densely the desired range of possible behavior.

Given ann x n matrix A, the suspensiorA of A is the fi + 1) x (n + 1) matrix
obtained by direct sum with the ¥ 1 identity matrix. SinceGya = Ga X Z, results
from [5] imply the following (seeSection 6for details).

Theorem 1.2 Let Ga be as in Theorem 1.1. Then the (i + 2)-dimensional Dehn
function of Gyip is equivalent to X°* where S = I('Ojr_l()l‘:; and oo = 2+ log, (1).

Given that the numbers are dense in the interval (2), it follows that the exponents
s are dense in (Xi + 2)/(i + 1)). Together with Corollary E off], we have the
following result, illustrated irfFigure 1

Corollary 1.3 IP® js dense in [1, c0) for k > 2.
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Figure 1: Isoperimetric exponents@f.i. The blue intervals indicate isoperimetric exponents
for the groups constructed iB]
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Methods

The methods used here to establish isoperimetric inequaliti€dfare quite different

from those used ing]. In the latter work, a slicing argument was used to estimate
volume based on information coming from one-dimensional Dehn functions. This
approach is rather less promising in the sub-Euclidean realm, since there are no one-
dimensional Dehn functions there to reduce to. (Reducing to larger Dehn functions
does not seem feasible, at least by similar methods.)

Instead we must find and measure least-volume fillings of 2—sphef@g directly,

using properties of the particular geometry of this group. We work with a piecewise
Riemannian cell complex with a metric locally modeled on a solvable Lie gRSuoR .

This metric is particularly simple from the point of view of the given coordinates, and
these preferred coordinates make possible various volume and area calculations that
are central to our arguments.

The preferred coordinates just mentioned do not behave well combinatorially, however.
Coordinate lines pass through cells in an aperiodic manner, and this cannot be remedied
by simply changing the cell structure. If one attempts to measure volume combina-
torially, counting cells by passing between cells and their neighbors in an organized
fashion (as with t—corridor” arguments, for example), one loses the advantage of the
preferred coordinates conferred by the special geometry of these groups. To count
cells, therefore, we use integration and divide by the volume of a cell.

The combinatorial structure is still relevant, however. The piecewise Riemannian
model is not a manifold, and its branching behavior is a prominent feature of the
geometry ofGa. In order to make clean transitions between the combinatorial and
Riemannian viewpoints, we use the transversality technology of Buoncristiano, Rourke
and Sandersor8]. This provides the appropriate notion of van Kampen diagrams for
higher-dimensional spheres and fillings. Transversality also helps in dealing with
singular maps, which otherwise present technical difficulties.

One other technical matter deserves mention: in order to apply resuistofdeduce
Theorem 1.2we are obliged to find bounds for te#ong Dehn functioywhich encodes
uniform isoperimetric inequalities for fillings of surfaces by arbitrary 3—manifolds. See
Section Zfor definitions and results concerning the strong Dehn function.

Remark/Conjecture 1.4 The groupsGa in Theorem 1.were classified up to quasi-
isometry by Farb and Moshefi4]. At the time, none of the usual quasi-isometry
invariants could distinguish these groups, but the two-dimensional Dehn function ap-
parently does so quite well. We conjecture that it is a complete invariant for this class
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of groups. What is missing is the knowledge that the real numbegi(ggletermines

the diagonal matriX 3 % ) up to a rational power. One needs to take into account the
specific assumptions on the integer ma#iXeg having a contracting eigenspace), to
rule out examples such 4¢9) and (33).

Acknowledgments Brady’s work was funded in part by NSF grant DMS-0505707,
and Forester’s by NSF grant DMS-0605137.

2 Preliminaries

In this section we discuss in detail some of the key notions needed to carry out the
proofs of the theorems. First we give a brief account of the transversality theory of

Buoncristiano, Rourke and Sanderson. Then we discuss volume, Dehn functions of
various types, and some basic results concerning these.

Handles and transverse maps

Using transversality, amap from a manifold to a cell complex can be putinto a nice form,
called a transverse map. Transverse maps indaneralized handle decomopositions

of manifolds, which will play the role of van Kampen diagrams in higher dimensions.
Whereasadmissible mapsvere used for this purpose ][ transverse maps have
additional structure, incorporating combinatorial information dependent on the way
cells meet locally in the target complex.

An index i handle(or generalized hand)eof dimensionn is a product:! x D",
whereX' is a compact, connectée-dimensional manifold with boundary, am"'
is a closed disk. LeM be a closech—manifold. Ageneralized handle decomposition
of M is a filtration ) = MCD ¢ MO < ... ¢ M® = M by codimension-zero
submanifolds, such that for eachM® is obtained fromM@—1 by attaching finitely
many indexi handles, as follows. To attach a single haridle- X' x D"~', choose an
embeddingh: 92" x D" — M1 and form the manifold @1 U, H. Note that
handle attachment is always alof' x D", and never along' x D" . To attach
several handles, we require that the attaching maps have disjoint imagd$ itt), so
that the order of attachment does not matter. Note that W§thY) and the individual
handlesH are embedded im0,

If every ¥ is a disk then this is the usual notion of handle decomposition arising in
classical Morse theory. Some new things can occur by varyihghowever. For



6 Noel Brady and Max Forester

instance, we allowX' to be closed, in which case the attaching map is empty and
M@= Uy H is the disjoint unionM(~1 LJ H. Such a handle is called ffoating
handle For example M© is formed fromM(1 = ¢ by attaching (floating) 0—
handlesD® x D", andM© is simply several copies d@". (The lowest-index handles

will always be floating ones.) Another phenomenon is that handles may be embedded
in M in topologically interesting ways, as in the following example.

Example 2.1 Given a closed orientable 3—manifolM, we may construct a gener-
alized handle decomposition as follows. Le€tC M be a knot or link inM. Let
M® be a regular neighborhood #f and declare each component to be a (floating)
1-handle. Let¥ be a Seifert surface foK, and let{%;} be the components of
Y N (M —int(MD)). The 2—handles will be regular neighborhoods of the surfages
in M —int(M®). Lastly, the 3—handles will be the component$bf- int(M@). This
decomposition has no O—handles, and its 1-handles are (obviously) knotted.

Now supposéM is ann—manifold with boundary. Ajeneralized handle decomposition
of M is a pair of filtrationsp) = M0 c MO c ... ¢ M™ =M and () = N&D ¢
NO ¢ ... c N1 = 9M by codimension-zero submanifolds, such that:

(1) the filtration® = NCY ¢ NO < ... ¢ N1 = 9M is a generalized handle
decomposition obM,

(2) foreachi, M® is obtained frorM(~DUN-1 by attaching finitely many index
i handles, and

(3) eachindex — 1 handle ofoM is a connected component of the intersection of
OM with an indexi handle ofM. In particular,N(—1 = oM N M® for all i.

In (2) each handléd = X' x D" is attached via an embedditg (9% x D) —
(OMI-DUNC-D) - As before, we require the images of the attaching maps of the index
i handles to be disjoint. It follows that the individuathandles are embedded i,

and are disjoint from each other.

Letf: M — X be a map from a compact-manifold to a CW complex. We say that

f is transverseo the cell structure oK if M has a generalized handle decomposition
such that the restriction df to each handle is given by projection onto the second
factor, followed by the characteristic map of a cellXf Thus, indexi handles map

to (n — i)—dimensional cells. In particulaM maps into then—skeleton ofX. In a
transverse map there may be floating handles of any index, and it may not be possible
to modify f to eliminate these. By the same token, one must always allow for the
possibility of knotted handles.
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One virtue of transverse maps is that they can easily be proved to exist. However, to
accomplish this, we must assume additional structure on the target coxplbe say

that X is atransverse CW complékthe attaching map of every cell is transverse to
the cell structure of the skeleton to which it is attached. The main existence result is
the following:

Transversality Theorem (Buoncristiano—Rourke—Sandersoti)et M be a compact
smooth manifold and f: M — X a continuous map into a transverse CW complex.

Suppose f|sm is transverse. Then f is homotopic rel OM to a transverse map g: M —
X.

The theorem includes the case whiteis closed: all maps of closed manifolds can
be made transverse by a homotopy.

This theorem is proved in Buoncristiano—Rourke—Sander8pifiof PL manifolds,

and the proof in the smooth case is entirely analogous. The proof is a step by step
application of smooth transversality, applied to preimages of open cells (considered
as smooth manifolds themselves), starting with the top dimensional cells and working
down. The first stage of the argument, in which the O—handles are constructed, is
explained fully in the proof of Lemma 2.3 of]. This is precisely the construction of
admissible maps (defined below).

Remark 2.2 In order to apply the theorem one needs transverse CW complexes.
Any CW complex can be made transverse by successively homotoping the attaching
maps of its cells (by the Transversality Theorem and induction on dimension); this
procedure preserves homotopy type. Moreover, in this paper, the coidplet we

use can be made transverse in a more direct and controlled way, preserving both its
homeomorphism type and its partition into open cells;Seetion 3andFigure 3

Admissible maps and combinatorial volume

Recall from B] the definition of anadmissible mapit is a mapf: M" — X™ ¢ X
such that the preimage of every opercell is a disjoint union of open—dimensional
balls in M, each mapped bly homeomorphically onto the—cell. Thecombinatorial
volumeof an admissible map, denoted Wil), is the number of open balls mapping
to n—cells.

It is clear that transverse maps are admissible: the interiors of O—handles are open
balls, and the rest oM maps intoX"~1. Conversely, if one applies the proof
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of the transversality theorem to an admissible map to make it transverse, then the
preimages of tha—cells will not change (except possibly by being shrunk slightly),
and combinatorial volume is preserved. For this reason, given an admissible map, the
closures of the open balls mappingriecells will be called 0—handles.

Note that in an admissible map, 0—handles may intersect each other in their boundaries.
For example, ifM has a cell structure, then the identity map is admissible, with 0—
handles equal to the closures of the top-dimensional cells.

In [5, Lemma 2.3] it is shown that every map from a smooth or PL manifold is
homotopic to an admissible map. This is a special case of the Transversality Theorem,
though it is not required that the target CW complex be transverse. The existence of
admissible maps can also be proved without relying on a smooth or PL structure; see
Epstein L1, Theorem 4.3].

Volume reduction

In this paper, generalized handle decompositions (and transverse maps) will serve
as higher-dimensional analogues of van Kampen diagrams. Indeed, in dimension
2, transverse maps already provide an alternative to the combinatorial approach to
diagrams, and they have several advantages. This is the viewpoint taken in Rourke
[23] and Stallings 25], for example. With van Kampen diagrams one often considers
reduceddiagrams, where no folded cell pairs occur. The same type of cancellation
process also works for admissible and transverse maps. One such process is given as
follows.

Let f: M" — X be an admissible map, and lefp,H; ¢ M be 0O-handles, and
a C M — (int(Ho) U int(H1)) a 1-dimensional submanifold homeomorphic to an
interval, with endpoints itHg andH; (we also allow the degenerate case in which

is a point inHy N H1). Suppose that mapsa to a point and mapklp andH; to the
samen—cell, with opposite orientations (relative to a neighborhootHefu o U H1,
which is always orientable). A typical example occurs wiies transverse and is a
fiber of a 1-handle joininddp andH; .

SinceHp andH; are 0-handles, there are homeomorphi$msH; — D" such that
f|n, = ®oh; for some characteristic map: D" — X. Now delete interiors off; from

M to obtainM’ with new boundary sphere§. Next delete the interior of a regular
neighborhood x D"1 of o in M’ (parametrized so thdt 1oy xon-1 = fl{13xpn-1)-
The new boundary becomes a union of two di§ksand an annulug\ = | x S'2.
Now collapseA to S™~2 and identifyDo with D1 via hal ohy, to formM”. This new
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space maps tX by f, and there is a homeomorphisgn M — M”. Now f o g is

an admissible map — X with two fewer 0-handles. Note that the other 0-handles

are unchanged. If desired, this new map can then be made transverse, with the same
0-handles, and with its (lowered) volume unchanged.

Remark 2.3 There s, in fact, a more general procedure for cancelpgndH; that

does not requirex to map to a point. This procedure is due to Hajd|[and a detailed
treatment was given by Epsteif]]. If X is 2—dimensional then the more general
procedure is not particularly useful: new O—handle pairs can be created when cancelling
Ho andHy, and volume may fail to decrease. In higher dimensions, however, no new
O-handle pairs are created and the volume will always decrease by 2.

Riemannian volume

If N is a smooth manifoldVl an oriented Riemannian manifold of the same dimension,
andf: N — M a smooth map, then theolumeof f can be defined. Following
Gromov [L7, Remarks 2.7 and 2%8, let vy be the volume form oM and choose any
Riemannian metric oiN. We define

RVoI(f) = /Nf*(uMy).

The integral is independent of the choice of metrichbnby the change of variables
formula. Note that we are usingol| (f), not vol(), in the notation of 17]. (The
latter allows cancellation of volume, which is not appropriate in our setting.) In fact,
we need not assume thisk is oriented, sincevy | is still defined. If dimN = 2 then
RVol is also denoted RArea.

If f is an immersion then this definition amounts to gividghe pullback metric and
taking the volume oN. More generally, iff fails to be an immersion at somes N,
thenf*(jum|) is zero atx, and does not contribute to volume. Hence, Rijoi§ the
volume of the pullback metric ol C N, the set on whiclf is an immersion. Note
thatU is open, and hence is a Riemannian manifold. Generiddllgas full measure
in N when dimN < dimM; see eg Gromovl, 1.3.1].

From this perspective, we can now define R¥plghen dimN # dimM. We define
RVoI(f) to be the volume olJ C N, the set on whicH is an immersion, with the
pullback metric. Note that RVdl] measuresn—dimensional volumewheren =
dimN.

Lastly, we wish to extend the definition of volume to allow a piecewise Riemannian
CW complex in place oM. The complexX that interests us is a 3—complex with
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branching locus a 2—manifold, homeomorphic to the produ@®fvith a simplicial

tree. In a neighborhood of any singular point one sees a union of half-spaces joined
along their boundaries, naturally grouped into two collections, with a well defined
common tangent space at the singular point. The situation is similar to that of a train
track, or a branched surface from lamination theory (eg Cale@8rigection 6.3]).
There is a smooth structure, akacomes equipped with animmersign X — M onto

a Riemannian manifolt. (This immersion is not locally injective, but is injective on
tangent spaces.) The Riemannian metrickis the pullback undeq of the metric on

M. The volume RVolK) can now be defined directly (as above) using this metric on
X, or equivalently by defining RvValj = RVol(q o f).

Remarks 2.4 (1) If dimN > dimM (or dimN > dim X) then RVolf) is zero, since
f is an immerison nowhere. Similarly, if factors through a manifold of smaller
dimension, then the volume is zero.

(2) Any transverse map: N — X is piecewise smooth, and is a submersion on each
handle. It will be an immersion only on the 0—handles. This latter statement also
holds for admissible maps, since the complement of the 0—handles is mapped into a
lower-dimensional skeleton.

Remark 2.5 We will be interested in finding least-volume maps extending a given
boundary map. If the set of volumes afcells of a piecewise Riemannian CW
complex is finite, then least-volume transverse maps-ahanifolds exist in any
homotopy class. This is because the Riemannian volume of a transverse map is a
positivelinear combination of numbers in this set, and hence the set of such volumes
is discrete, and well-ordered.

Dehn functions

Here we recall the definition of the—dimensional Dehn function of a group from
[5]. Note that these definitions all use combinatorial volume. Given a gf@ugf
type Fnt1, fix an aspherical CW compleX with fundamental grougs and finite
(n+ 1)—skeleton (the existence of suchXiis the meaning of “typeFn,1”). Let X be
the universal cover oX. If f: §' — X is an admissible map, define tfiling volume
of f to be the minimal volume of an admissible extensior o6 B™:

FVol(f) = min{Vol™(g) | g: B™! — X, glpgnss =1 }.
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Note that extensions exist sineg(X) is trivial, and any extension can be made
admissible, by%, Lemma 2.3]. We define the—dimensional Dehn functioof X to
be

sMW(x) = sup{ FVol(f) | f: ' — X, VoI"(f) < x}.

Again, the mapg$ are assumed to be admissible.

In Alonso-Wang—PrideZ] it was shown that(V(x) is finite for eachx € N, and that,
up to coarse Lipschitz equivalend®? (x) depends only o&. Thus the Dehn function
will sometimes be denot n)(x). (Recall that function$, g: R, — R, arecoarse
Lipschitz equivalentf f < g andg < f, wheref < g means that there is a positive
constantC such thatf (x) < C g(CxX) + Cx for all x > 0.) If we wish to specifys(M(x)
exactly, we may denote it a&’(x).

Taking n = 1 yields the usual Dehn functiof(x) of a groupG.

The strong Dehn function

The notion ofn—dimensional Dehn function was modified &l fo allow fillings by
compact manifolds other than the bBII*!. In this way, every compact manifold pair
(M, OM) gave rise to a Dehn functiof(x). Several of the main results proved Bj |
had hypotheses and conclusions involving the functidhé) “for all n—-manifolds
M.” An equivalent way of formulating these results is by means ofstineng Dehn
function defined as follows.

Given a compactr(+ 1)—manifoldM and an admissible mafz M — X, define
FVolM(f) = min{Vol™(g) | g: M — X admissible glom = f }

and

AM(x) = sup{ FVoM(f) | (M, M) is a compactr{+ 1)—manifold

f: OM — X admissible VoI"(f) < x}.

We call A1 (x) thestrong n—dimensional Dehn functiof X. Note that the manifolds
M appearing in the definition are not assumed to be connected. The statkffiet<
y means that for every compact manifol (0M) and every admissible mdp oM —
X of volume at mosk, there is an admissible extensionNbof volume at mosy. In
particular, the boung is uniform for all topological types of fillings (hence the word

“strong”). Note that this is very different frohomologicalDehn functions, where
only a single filling by anrf + 1)—chain is needed, of some topological type.
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The strong Dehn function has two principal features. The first is that it behaves well
with respect to splittings and mapping torus constructions (as does the homological
Dehn function). The next two theorems below are examples of this phenomenon. The
second is that it (clearly) satisfies

(1) i) < AP

and hence it may be used to establish upper bounds®x). To this end, the
following two theorems are proved iB][(Theorems 7.2 and 8.1).

Theorem 2.6 (Stability for Upper Bounds) Let X be a finite aspherical CW complex
of dimension at most n+ 1. Let f: X — X be a m1—injective map and let Y be the
mapping torus of X using f. Then Agp Jrl)(X) < A@(X).

Thus, any upper bound fcﬁsg?)(x) remains an upper bound faﬁig’*l)(x). A similar
result holds more generally (with the same proofYifs the total space of a graph of
spaces whose vertex and edge spaces satisfy the hypotheses§tuén the conclusion
is that AT (x) < C AP (x) for someC > 0.

The next result provides a better bound in a special case.

Theorem 2.7 (Products withS') Let X be a finite aspherical CW complex of
dimension at most n + 1. If Ag‘)(x) < CX¢ for some C > 0 and s > 1 then
Ag?:él)(x) < Cl/SXZ—l/S'

It turns out that fom > 3 and forn = 1, there is no significant difference between the
strong and ordinary Dehn functions. The precise relation between them is stated in the
next theorem, which was essentially proved already in Remark 2.5(4) and Lemma 7.4
of [5].

However, we do indeed need to work specifically with the strong Dehn function in
dimension 2, since we wish to applhheorem 2.7above. This case forms the base of
the induction argument we use to show thdfIis dense for alh > 2.

Afunctionf: N — N is superadditivef f(a) + f(b) < f(a+ b) forall a,b € N. The
superadditive closuref f is the smallest superadditigesuch thatf (x) < g(x) for all
X. An explicit recursive definition of is given by

9(0) = f(0), 9(¥) = maxq{g(i) +gx—1)[i=1,....,x=1U{g(0)+F(x)}}.

It is easy to verify thatA(M(x) is always superadditive, by considering fillings by
non-connected manifolds.
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Theorem 2.8 (Brady—Bridson—Forester—Shankaz),§(r‘)(x) is the superadditive clo-
sure of 5§(n)(x) forn > 3 and for n = 1.

It is not known whether there exist grou@sfor which 6g‘)(x) is not superadditive (up
to coarse Lipschitz equivalence). Indeed, wimes 1, Sapir has conjectured that this
does not occurl8]. So in all known examplesA®™ and 6™ agree (forn > 3 or
n=1).

In contrast, Young 28] has shown that the statement of the theorem is false when
n = 2. Specifically, he shows that for a certain gro@p the strong Dehn function
Ag)(x) is not bounded by a recursive function, wherégﬁ(x) always satisfies such a
bound, by Papasogl2p]. The superadditive closure will inherit this property, since it
is computable fromy2)(x).

Proof Let (x) be the superadditive closure &f)(x).

If n = 1 then the proof of Lemma 7.4 ob] shows directly that for any compact
2—manifoldM, one hasiM(x) < §2°21P*(x), where the number of disks equals the
number of boundary componentsidf. For each admissiblie: S'Li---1USt — X with
lengthx = 3, % we have FVAPY 0% (f) < 3. 6@ (x) < s(x), and sod™(X) < s(x).
Therefore AM(x) < s(x). Since AD(x) is superadditive and®(x) < AD(x), it
follows that AD(x) = g(x).

If n > 3 then the argument given in Remark 2.5(4) 5ff §pplies. Let{N;} be the
components 0BM and suppose thaji: N; — X are admissible maps of volume,
with uniong: OM — X of volumex = >, x;. By the argument given irf], for each
i there is an admissible homotopy of 1)—dimensional volume at moét”(x) to an
admissible mag: N; — X with image insideX("-1. The union of these maps can
be filled by a mag — X, sinceX(™1) is contractible inside&X(™. This filling has
zero 1+ 1)-dimensional volume, and hence P¥) < 7, 6™ (x) < s(x). Since
M andg were arbitrary, we have\(™(x) < s(x), and henceA™(x) = s(x). o

Remark 2.9 (Lower bounds) As noted earlier, the strong Dehn function can be used
to bounddé™(x) from above. For a lower bound one needs explicit information about
F\Vol(f) for admissible map§: S' — X. That is, one needs to identifgast-volume
extensionsy: B! — X. Suppose dinX = n+ 1 andHn1(X;Z) = 0. Then a
simple homological argument, sketched in Remarks 2.2 and 25, aHows thag is
least-volume ifg is injective on the interiors of 0—handles (i.e. no two O—handles map
to the same cell oK). For convenience we provide the full argument here.
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Let Cn+1()~() be the cellular chain group fof. Given an oriented manifol¥™* and

a transverse map: M™! — X, there is a chainf| € Cn1(X) defined as follows.
For each i+ 1)—celle,, let o, be the corresponding generator@f, 1(X) and define
d.(f) to be the local degree df at e, (i.e. the number of 0—handles 6fmapping
to e,, counted with respect to orientations). We defifief >  d.(f)o.. Note that
the boundary off] in Cy(X) is simply [f|sm]. (Here the transversality structure is
used: O—handles i@M are joined to O—handles i by 1-handles, compatibly with
boundaries of characteristic maps of cellin

Now suppose thag: B! — X is injective on O—handles, arfd: B™! — X is
another transverse map withis: = g|s. These maps together define a transverse map
g—h: 1 — X by consideringS™! as a union of two balls, with the orientation
on one of the balls reversed. We havg@-{ h] = [g] — [h] in Cny1(X), and so

dlg — h] = 0[g] — d[h] = 0, and p — h] is a cycle. SinceHn+1()~() = 0 and
Cn+2()~() = 0, this cycle must be zero iﬁn+1(>~(). Thatis,g — h has zero local degree

at every i+ 1)—cell. Henced,(g) = d,(h) for all .

The injectivity assumption og implies that Vol*1(g) = > o |da(9)|. Then we have
VoI (h) > Y " [da(h)] = ) [da(@)] = VoI™(g),

and hencey is least-volume.

3 The groupsGa and their model spaces

The model manifold M

Let M be the manifoldR2 with the metricds® = A\~Zdx2 + p~%dy? + dZ, where
A>1,pu<1,and\u > 1. Thisis the left-invariant metric for the solvable Lie group
R? xR, with z € R acting onR? by the matrix( 3 9;) . The geometry oM has much

in common with that of 8L (the case\up = 1), but with some important differences.

The group G, and its model spaceX

Let A € My(Z) be a hyperbolic matrix with eigenvalues > 1 andy < 1 and
determinantd = Ax > 1. LetB € GLy(R) diagonalizeA, so thatBAB™! = (3 ).
Call this diagonal matriD. ThenD preserves the latticE ¢ R?, defined to be the

image ofZ x Z underB.
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Let Ga be the ascending HNN extension®fx Z with monodromyA. That is,
Ga = (ZxZ,t|tvt1=Avforallve Z x Z).

The matrix B defines an isomorphism frorGa to the (non-discrete) subgroup of
R? x R generated by and 1€ R (corresponding to the stable lettiee Ga).

The groupsGa are the main examples that interest us in this paper; our chief task
will be determining their 2—dimensional Dehn functiof{®(x). For this we need to
construct a geometric model f@a. Note thatR? x R cannot serve as a model since
the subgroupG, is not discrete. (Indeed, this Lie group is not quasi-isometririyp
finitely generated group, by Eskin, Fisher and Whyit8.))

Topologically, our model is formed from? x | by glueingT? x 0 to T2 x 1 by thed—

fold covering mapra: T? — T2 induced byA. To put a piecewise Riemannian metric

on this space, we use the geometryhMfas follows. The construction is analogous

to building the standard presentation 2—complex of a Baumslag—Solitar group from a
“horobrick” in the hyperbolic plane, as in Farb—Mosh&8]

Let Q C R? be the parallelogram spanned by the generatois.oThenQ x [0, 1]

is a fundamental domain for the actionBfon R? x [0, 1] ¢ R? x R, with quotient
homeomorphic tar? x [0, 1]. The isometryR? x 0 — R? x 1 given by &,y,0) —
(Ax, iy, 1) is '—equivariant and induces a local isomel$/T" x 0 — R?/T" x 1. This
local isometry agrees precisely with the mBp: T? — T2 under the identification of
R?/T" with T? induced byB. Thus, identifying opposite sides @f x [0, 1] to obtain
a copy of T2 x [0, 1], the glueingT? x 0 — T2 x 1 is locally isometric, and the model
for Gp is a piecewise Riemannian space. CaKjtand its universal covex.

Figure 2below showsQ and the locally isometric glueing map for the example
A= (1 %) The diagonal matrix stretches horizontally and compresses vertically.

3.1 The coverX is tiled by isometric copies of) x [0,1], with tiles meeting
isometrically along faces. A generic point in the top f&ge& 1 of a tile meetd tiles
in their bottom faces; side faces are joined in pairs. TopologicXllis a branched
space homeomorphic 1®? x T, whereT is the Bass—Serre tree corresponding to the
splitting of Gp as an ascending HNN extension. TBg—treeT has a fixed endy and
there is an equivariant mam: T — R, sendingn to —oo and all other ends teo,
such that the induce@a—action onR is by integer translations. The preimageZf
under this map is the set of verticesDf

There is a locally isometric surjectiaq: X — M which, viewed via the homeomor-
phismsX = R? x T andM = R? x R, is given by the identity orR? and the map
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L\

Qx0 Qx1

—/

Figure 2: The regiorQ and the glueing map given by the diagonalized formAot (1%).
Also shown is a cell structure (discussed below) for which this map is combinatorial.

ho: T — R described above. The metric hmay be viewed as the pullback metric
of M under this map. In particular, for any compact manif#idand any piecewise
smooth magf : W — X, we have RVol{) = RVol(qo f).

If L C T is a line mapping homeomorphically f& under hg, then the subspace

R2 x L C X is isometric toM. This situation is completely analogous to that of the
solvable Baumslag—Solitar groups, whose standard geometric models contain copies
of the hyperbolic plane (cf Farb and Mosh&8]).

The maphy: T — R also defines &eight function h X — R by composing with the
projectionX 2 R2 x T — T.

Cell structure

The basic cell structure oX is the usual mapping torus cell structure, induced by the
standard cell decomposition for the torus, but we will need to modify the attaching
maps to make it a transverse CW complex.

First, consideQ x [0, 1] combinatorially as a cube and give it the product cell structure
(with eight 0—cells, twelve 1—cells, six 2—cells, and one 3—cell). The side-pairings are
compatible with this structure, so we have a cell structur&oq[0, 1]. Now subdivide

the top and bottom fac&& x {0, 1} into finitely many cells sothafa: T2x0 — T?x1

maps open cells homeomorphically to open cells (iTg. becomes aombinatorial
map). Note thatT? x O will have d times as many 2—cells & x 1, sinceTp is a
d—fold covering. The pattern of subdivision is obtained by taking intersections of cells
of T2 x 1 with cells of TA(T? x 0). SeeFigure 2for the exampleA = (£ 2). Since

Ta takes cells to cells, we now have a cell structureXon



Density of isoperimetric spectra 17

Next we make the cell structure transverse. In this case, the transversality procedure
does not change the homeomorphism typ&ebr even its partition into open cells.
Thus, the piecewise Riemannian metric will still exist, exactly as described, with either
cell structure.

Every mapS — XO is transverse, so the 1-skelet¥f!) is already a transverse

CW complex. For the 2—skeleton, note that for each attachingShap X® in the
original cell structure, there is a realization$fas a graph such that the map is a graph
morphism. To make this map transverse, expand each vertex into a closed interval (a
1-handle) to form a slightly larger circle. Letthe new attaching map first collapse these
intervals back into vertices, and then mapX@) by the original attaching map. We
have simply introduced some “slack” at the vertices. The 2—skeleton and its partition
into open cells has not changed.

For the attaching mag? — X® of the 3—cell, note again th& has a cell structure

for which this map is combinatorial (this is a property of our particular complx
Expand every 0—cell into a small disk (a 2—handle) and then expand every 1—cell into
a rectangle (a 1-handle), to abtain a new copof The new transverse attaching
map will collapse these new handles to 0— and 1—cells and then még tas before.
SeeFigure 3 Again, the topology oiX is unchanged. (This amounts to a claim that
performing the collapses described above in the boundary of a ball results again in a
ball.)

7

Figure 3: Transverse 3—cell attachment. The rightmost map is the original attaching map; the
composition is the new (transverse) one.

The universal coveX is given the induced cell structure. Note that the closures of the
3—cells are exactly the copies @ x [0, 1] tiling X mentioned earlier. Also note that
every 2—cell is eithenorizontalor vertical: in the produciR? x T, it either projects to

a pointinT or to a line segment ifR?. In the latter case, the projection of the 2—cell
in T is exactly an edge.
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4 The upper bound

We proceed now to establish an upper bound for the strong Dehn funitffx) of
the groupGa.

Let W be a compact 3—manifold with boundary aihd ®W — X an admissible map,
which we may make transverse without changing its combinatorial area (by a homotopy
inside X®@, of zero volume). Now leg: W — X be a transverse extension bbf
smallest Riemannian volume (Remark 2.5.

We need to measure the combinatorial volumeg @nd bound it in terms of the area
of f. Note that every 0—handle & has the same Riemannian volume, equal to the
volume V of the single 3—cell inX. Thus, to count the 0—handles, we will instead
measure the Riemannian volume @ty integration and divide by. It turns out
that the geometry oX is well-suited to this kind of measurement. We will also work
with the Riemannian area @f but again the relation to combinatorial area causes no
difficulty.

The embedded case

First we discuss a special case in order to clarify the geometric ideas, before incorpo-
rating transverse maps into the argument. We will assuméthiata subcomplex of
X, with g the inclusion map.

SinceW is a manifold, every 2—cell oV is either in0W or is adjacent to two 3—cells

of W. Let F C W (thefold se) be the smallest subcomplex whose 2—cells are the
horizontal 2—cellss such thate ¢ OW and both adjacent 3—cells aaboves with
respect to the height functidm: X — R. (The fold set may be empty, of course.)

Proposition 4.1 RVol(W) < ﬁ(Area(@W) + 2 Areaf)).

Proof In M, integrating the volume element ) —*dxdydzalong a vertical ray from
z=01toz= o yields W times dxdy, the horizontal area element at the initial
point of the ray. Also, at any point afW, the surface area element is greater than or
equal to the horizontal area element.

Consider a flow orX 22 R2 x T which is towards the end in the T factor and the
identity in R2. This flow is semi-conjugate (bg) to a flow in M which is directly
downward. Under this flow, every poiqt of W leavesW, either throughoW or
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throughF. Let 7_(p) be the first point obW or F thatp meets under this flow. This
definesamap_: W — (OWUF), not necessarily continuous. Thevidecomposes
into two parts Wy = 7-%(dW) andWg = 7~1(F).

For anyp € OW, the fiberr~1(p) is a segment extending upward frggmand integrat-
ing along these fibers, we find that RVI{) < ﬁArea@V\I). For RVoI\W), the
fiber of any point inF consists otwo segments extending vertically, so RUWM) <
ﬁ AreafF). o

It now suffices to bound Arek{ from above in terms of Are&iV).

4.2 We need to make some definitions. LUet= log,(Area(®W)). We have the
following properties.

(2) AL = Area@Ww)
3 ML = Area(@\/\/)'OQA(M)
(4) ()\M)L = Area(@\/\/)l‘HOgA(M)

Equation (2) holds by definition, (4) follows from (2) and (3), and (3) is an instance of
the identityal®%(© = %@

Letvy,..., v € V(T) be the vertices in the image W under the projectionrt: X —
T. We define several items associated to these vertices:

e hy = hg(Vvj), theheightof v,

e Fi = n7i(v)NF,thefold setaty

e Ti={xeT|v€[x,n)}, thesubtree above;v
and the following subsets @fW:

e S =0Wn (T, thesurface above;v

e A =S nh((h,h + 1)), thelow sliceof §

e Bi=Snh((h+L,h + L+ 1)), thehigh sliceof S.

Note thatoS has heighty, so A; lies between heights 0 and 1 aba¥g, andB; lies
between heights andL + 1 aboveds.

Lemma4.3 ANA =B NBj =0 fori#]j.

Proof Consider the case &% andA; first. If hy # hy thenh(A)) N h(A) = 0 since
vertices have integer heights and the $€&5) have the form I, h + 1). If hy = h;
thenv; ¢ Tj andy; ¢ T;, which implies thatT; N Tj = (), and hence® and A, are
disjoint. The case oB; andB; is similar. ]
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Recall that for eaclp € F, the fiberr—1(p) is a pair of segments extending upward
from p (it is an open subtree qip x T C R? x T, with no branching, sinc&V is a
manifold). Define a (hon-continuous) map : F — 0W by choosingr (p) to be
one of the two upper endpoints of the fiber!(p) for eachp € F. Note thatr, is
injective (sincer_ o 4 = idg), and 7, (F;) C §. The choices of endpoints can be
made so thatr, is measurable.

We now express each fold sEt as a union of two parts, tHew andhigh parts, as
follows:

(F)iow = {p€Fi | h(m+(p)) <h +L+1}
(Fnign = {p € Fi | h(m(p)) = hi + L+ 1}.
Also defineF o = |J;(Fi)iow andFpign = |J;(Fi)nien. Clearly,F = Fjon U Fpigh.

VoA

Proposition 4.4 AreaFiow) < (A\i) Area@W)>2+109: ()

Proof We compare the areas &, and its image underr, which is a subset

of OW. Since w, projects points ofF, upward a distance of at most + 1,

the horizontal area element at € Fy,, is at most fu)-*1 times the horizontal
area element atr(p). Recall also that this latter area element is no larger than
the surface area element OW at 7 (p). Since 7, is injective, we now have
AreafF o) < (A\w)-T1Area(r(Fion)). The proposition follows, b¥quation 4and

the fact that Areaf (Fjow)) < Area@W). |

4.5 We need to introduce some further terminology. Recall that thegna} — M

is the identity on theR? factors ofX andM. Thus theR? factor of X has coordinates
X,y coming fromM. Let 7y, 7y: X = R? x T — R? be the projection maps onto the
X— andy—axes:my(X, Y, t) = (X,0) andmy(X,y,t) = (0,y).

Givent € T and a subse® c R? x t, let 4(S) be the length ofr,(S) x hg(t) considered
as a subset d¥1. This subset is contained in a line parallel to #x@xis, and its length
in M will depend on the height df. Similarly, let4(S) be the length ofry(S) x ho(t).
Since the metric ofiR? x t is Euclidean, we have

() Aread) < &(S 4(9).

Now consider two additional projection mapsh: the maplly: M — M given by

(X, y,2 — (x,0,2), andIly: M — M given by &,y,2) — (0,y,2). If we consider

the image coordinate planes in their induced metrics, both of these maps are area-
decreasing for surfaces M.
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We wish to estimate the area dfifon Using Equation 5 For this, we will relate
b((Fi)nign) and &((Fi)nign) to the areas o, and B;j. Consider two more families of
setsinM =R? xR :

Qi = mx((Fi)nign) x (hi,hi + 1)
R = m((Fi)nign) X (hi + L, hi +L +1).

These sets are contained in the- andyz—coordinate planes respectively, and their
areas may be measured in the induced (hyperbolic) metrics.

Lemma 4.6 For each i we have

(1) &((Fi)nign) < AAreaQ;)
(2) 4((Finien) < pu-AreaR).

Proof For (1), the induced metric on thez—coordinate plane is given bgs® =
A~2dx? + dZ, with area elemend—%dxdz Let D; C R be the projection{x € R |
(X, 0) € mx((Fi)nign)}. We have

hi+1 hi+1
Area@Q) = / /h A Zdzdx > / /h A" =1dz dx

_ )\_1/ A7Mdx = A7X6((Fi)hign)-
Di

The inequality holds sinca > 1, and the last equality holds sinEg has heighty;.

Part (2) is similar. Theyz—plane has metric given bys® = ;~2dy? + dZ with area
elementy~“dydz Let E; C R be the projectiofy € R | (0,y) € my((Fi)nign)}- Then

hi+L+1 hi+L+1
AreaR) = / /h ] " Zdzdy > / /h M dz dy
] i+ ] i

+L
=t [y = ),
This time, the inequality holds becauge< 1. ad

Proposition 4.7 AreaFig) < A Area@W)ZH1oo ).,

Proof We will show that

(6) Area(Fi)nign) < Au-Area(y) Area®;)

for all i. Then, summing over and applying_.emma 4.3 we obtain
AreaFrig) < Au-Area@W)?
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which implies the proposition bgquation 3

To establistEquation 6it suffices to show that Are@) < Area(d) and AreaR) <
Area@®;) and to applyEquation 5andLemma 4.6

First we claim thatlly(q(B;)) containsR,. Choose anyp € (Fi)ngn andh € (hj +
L,hi + L +1). Write p as @o,to) € R? x T and 7, (p) as fo,t1). The segment
Po x [to, t1] is part of the fiberr—1(p), and is contained itw. Sincep is in the high
part of F;, the height oft; is at leasth; + L 4+ 1, and there is a uniquiec [to, t1] of
heighth. Now we have fp,t) € W. The line through ffp,t) parallel to thex—axis
must exitW, at some poinb € Bj. Now IIy(q(b)) = (my(b), h) = (7y(p), h), and we
have shown thalR C II,(q(B;)).

By a similar argument]lI«(q(A;)) containsQ; (reverse the roles ok and y and
chooseh € (hi,h; + 1)). Now recall thatll, andIl, are area-decreasing aiwdis
locally isometric. It follows that Ared) > AreaR) and Areahy) > Area@), as
needed. a

Finally, putting together Propositions1, 4.4, and4.7, and consolidating constants
(with the assumption that Area{V) > 1), we obtain

7) RVOI(W) < <2A(’fn(+Ai))+l

which has the form of the desired upper bound Adf)(x).

> Area(a\N)ZHOQ)\(M)

The general case

Now we return to the situation given at the beginning of this section, wipei&/ — X

is a least-volume transverse extensiorf ofoW — X@. The proof will follow the

same general outline as in the embedded case, and we will work with analogues of the
various itemd;, A, B;, Qi, R, etc. The proof itself does not depend formally on the
embedded case, though we will use several of the intermediate results obtained thus
far.

4.8 We need to introduce some terminology related to the generalized handle decom-
position of W. Recall that a 2—cell oK is either horizontal or vertical, accordingly as
it maps to a vertex or an edge of the tiee

A 1-handle ishorizontalif it maps to a horizontal 2—cell oK and is not a floating
1-handle (i.e. it is homeomorphic tox D?, and not toS' x D?). A 1-handle is
vertical if it maps to a vertical 2—cell oK and is not a floating 1—handle. Thus, every
1-handle is either horizontal, vertical, or is a floating handle.
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Remark 4.9 Every non-floating 1-handle either joins a O—handle to a O—-handle, a
O—handle todW, or OW to OW. In the first case, since the mapis least-volume,

the two O—handles map tiistinct 3—cells ofX. For otherwise, the two neighboring
O-handles can be cancelled by the procedure describ&dtion 2 reducing the
volume ofg. No 1-handle joins a 0—handle to itself, sinééas the property that no
2—cell appears more than once as a “face” of any single 3—cell; the closure of a 3—cell
in X is an embedded ball with interior equal to the open 3—cell.

4.10 We will need to make use of some vector fieldswhobtained by pulling back
the coordinate vector fields avl viathe mapqog: W — M. These vector fields will
be denoted?., a%’ and 2, and they are defined on the interiors of the 0-handles. In
particular, every 0—handle has an “upward” direction givena%J.y

We say that a horizontal 1-handteis minimalif a% is directedawayfrom H in both
neighboring O—handles. Such a 1-handle is a local minimum for the height function
(the z—coordinate) on the treg.

Since T branches only in the upward direction, and since horizontal 1-handles are
joined to 0—handles mapping to distinct 3—cellsXn there are no “maximal” 1—
handlesH (WheregZ is directed towardd on both ends). Hence if a horizontal handle

H = | x D? is not minimal, thengZ on the neighboring 0—handles can be extended to

a non-vanishing vector field od, tangent to the factor. Thus we will always regard

a% as being defined (and non-zero) on the union of the 0—handles and the non-minimal
horizontal 1-handles.

Let .% be the partial foliation oW whose leaves are the orbits of the flow aloggg
Some leaves of% may terminate or originate in a 2— or 3—handleVédf These are
the leaves whose images ¥imeet a 0— or 1—cell. In terms of transverse area, the
set of such leaves has measure zero, and we will discard them#ormote that the
remaining leaves of# still meet the 0—handles in a set of full measure. Ugtlenote

the union of the leaves of.

Every vertical 2—cell ofX is a face of exactly two 3—cells, and also is not tangent
to the vector fieldsa% or a%- (The sides ofQ are not parallel to the— or y—axes
because the matriR is hyperbolic.) These facts, together wRemark 4.9 imply
that for any vertical 1-handlel = | x D?, the vector field% on the neighboring
O-handles extends to a non-vanishing vector fieldHgrtangent to thd factor. By
adjusting lengths, we can arrange that this field is independent af-ib@ordinate
(this is already true in the O—handles). The vector fi§;dis defined similarly. We
also define partial foliations’% and .%, on the union of the 0O—handles and vertical



24 Noel Brady and Max Forester

1-handles, analogously t&,. Note that these two foliations coincide in the vertical
1-handles, even though they are transverse elsewhere. Again, we will discard all
leaves terminating or originating in a 2— or 3—-handle/f Let Uy and Uy denote,
respectively, the unions of the leaves.8f and of.%,.

4.11 Every leaf of.% is homeomorphic tR and is oriented by the vector fielgz.

It terminates in a well-defined point éiW, and originates either at a point (W or
at a point in the boundary of a minimal 1-handle. Similarly, every leaf#ptnd.%
both originates and terminates 6. Forp € U, let 7,(p) denote the terminal point
of the leaf of.%, containingp (for a« = x,y, z). This defines maps,: U, — OW.
Also let o,(p) be the origination point of the leaf of,, containingp.

Definition 4.12 We wish to define théold setdn W, which will be embedded surfaces
with boundary (minus a measure zero set). egt .., e be the closed edges df
which meet the image oft o g. Given g and a pointp; in the interior ofg, the
preimage f1 o g)~(pi) is a properly embedded surfad® C W, by transversality,
and the preimage of the interior & is an open regular neighborhood Bf. The
intersection ofX; with the handle decomoposition ¥¥ is a handle decomposition of
¥i, and the map is transverse with respect to this structure. The closure of the preimage
of the interior ofg is a union of handles AV, and is a codimension-zero submanifold
of W, homeomorphic t&; x |, with the product handle structure. That is, each 0—,
1-, or 2—-handle ob}; x | is the product of a 0—, 1—, or 2—handledf with I. The
product structure:; x | is chosen so that fibegsx | map byq o g into vertical lines

in M (in particular,l corresponds to the—coordinate in the O—handles).

Let v; be the lower endpoint of (with respect to the height function), and orient the

| factor of 3; x | so thatX; x 0 maps tov;. The handles oW comprising; x | are

all 0—, 1—-, and 2-handles. Various 1—, 2—, and 3—handles (those mappingyo

71 o g) may be attached in part t6; x 0. LetE; be the intersection of; x 0 with

the union of all minimal 1-handles. Itis a codimension-zero submanifold of O,

equal to a union of attaching regions of minimal 1-handles. Every minimal 1-handle
is attached to two surfacds, E; for somei # j, since the adjacent O—handles are
distinct and map to distinct edges ©f Lastly, defineF; to be E; N U,. Note thatF;

has full measure iff;.

Having definedF; and v;, note that various verticeg may now coincide (unlike
the embedded case). Define the heightexactly as before:h; = hp(v;). Define
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L = log, (RAreaf)), and note that equations analogous2p-(4) hold.

(8) AL = RAreaf)
9) ML = RArea()lng(H)
(10) ()t = RAreaf)t'09:w

We redefine the subtreéls to be smaller than those fro®ection 4.2 by splitting
along the edges above the vertex. That is, we now define

T = {xeT]int(e)N[x,n) #0}.
This is anopensubtree ofT, not containingy;. Define§, A;, andB; as follows:
e S =0Wnclosure(§orr) X(T))
o Ai=Sn(goh)*(h,hi+1)
e Bi=Sn(goh)y~((h +L,h +L+1)).

Note thatS is a subsurface oW and 0§ = OW N (X x 0). The next lemma has
essentially the same proof Bemma 4.3

Lemma4.13 ANA =B NB; =0 fori #j. |

Now let F = J; Fi, and definer,: F — OW to be the restriction|r. That is,
74 flows F “upward” alonga% to OW. Note thatr, is indeed defined of, and is
injective. Define théow andhigh parts ofF as before:

(Fi)iow = {P € Fi | h(g(m+(p))) < hi + L+ 1}
(Fidnigh = {p € Fi | h(g(m+(p))) > hi + L + 1}.
Also defineF o = |J;(Fi)iow andFpign = |UJ; (Fi)hieh-

Lemma 4.14 RVol(g) < iy (RAreaf) + RAreag|r)).

Proof We have RWol§) = RVol(g|u,) sinceU; has full measure in the 0—handles of
W. Note that every leaf of#, starts onF or on W, and ends irdW. Thus we may
decomposdJ, asUF U U? where

UF = {peU,|ofp) €F},
U2 = {pe U, |ofp) € OW}.
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Now RVol(g|u,) = RVol(g|ur) + RVol(g|ys). By pulling back the metric fronX and
integrating along leaves of,;, we have

RVol(glus) < RAreag|r)

In(\y) ()\ )
and

RVol(g|ys) < RArea@low) = RAreaf). o

In(\2) (A ) In(\z) (>\ )
Remark 4.15 In the current situation, there is no ambiguity or choice involved in
the definition of ;.. The difference with the embedded case is that each minimal
1-handle hasvoattaching regions contributing t, and there is a unique way to flow
upward from each side. In effect, the fold set has been doubled, and this also accounts
for the missing factor of 2 ihemma 4.14compared wittProposition 4.).

Our main task now is to bound RAregf) in terms of RAred{(). The next result is
entirely analogous t@roposition 4.4and has the same proof. The only difference is
that here the area elements are pulled back fkam

Proposition 4.16 RArea@lr,.) < (\u)RAreaf)?+oow), O

Next we need an analogue Bfjuation 5 In order to define the length% and ¢y for

the sets K;)nion, We need to extend the vector fiel§§ and % to the surfaceg’; x 0.
Recall thatsj x | has a product handle structure, and these vector fields are defined in
the interiors of the 0—handles and 1-handles (all of which are vertical). Not%lhat

in the interior of%; x |, is zero in thel factor and constant (ase | is varied) in the

Y factor. Thus% extends continuously t&; x 0 as a non-vanishing field, defined
on the interiors of the 0— and 1-handlesXjfx 0. Any leaf of %y meetingX; x 0O
remains entirely withirt; x 0, sincegx is tangent to this surface (indeed, evetyx t

has this property). The vector fie% extends ta%; x 0 in the same way. Lastly, we
discard leaves af# and.#, meeting 2-handles df; x 0, so that every leaf it x 0
begins and ends i6S . These remaining leaves have full measure in the 0—handles of
Ei x 0.

We now definely((Fi)nizn) to be the transverse measure of the set of leave%of
meeting Ei)nign. That is, we projectK;)uion N Uy to 0§ using 7y, and then measure
this set by integrating the pullback of the length elemgntdx from M. Similarly,
ly((Fi)nien) is defined using the length elemeut“dy.

Proposition 4.17 RAreag|(Fi)Mgh) < Lx((Fi)nign) £y((Fi)nign) for each i.
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Proof First observe that the intersection of a leaf®f and a leaf of%, is either one
point (in a 0—handle oF; x 0), a closed interval (in a 1-handle¥f x 0), or is empty.
To see this, map both leavesb and project onto the—axis. Each%y leaf maps to

a single point, whereas eachy leaf maps monotonically, with point preimages equal
to sets of the form described above.

It follows that the map
is injective when restricted to the O—handlesifx 0.

Next define the map;: X x 0 — R? tobeqog: X x 0 — M followed by projection
onto the first two coordinates dfl = R3. Thus, q(g(p)) = (gi(p), i) € M for all
peix0. Letmy,my: R? — R be projections onto the first and second coordinates
respectively. Itis easily verified thagt agrees with the following composition of maps:

Ty X Tx

(Cix 0)NUxNUy 227 05 x 05 229, R2 x R? ™0, R xR,

(Write q(g(p) as &, Yp, hi); both maps seng to (xp, yp).)

Recall thatY; x 0 maps intoR? x h; ¢ M, and so the surface area element being
pulled back in the computation of RAr&,),,,) is the horizontal area element bf.
This element is just the product of the length element&x and .~ “dy.

In the integrals below,H)x;qh is understood to be restricted to the O—handles;of 0
(where area is supported). We have

RAreag|ry,.,) = / (qo g)*(A\*dxu?dy)

(Fi)nigh

= / (mx X Ty o Gi X Gi o Ty X ) (A"“dxp"*dy)
(Fi)highNUxNUy
which, by injectivity of 7, x 7y, is at most

/ (% 1y 0 01 X Gi)” (Al Zdy).
Ty((Fi)nigh"UxNUy) X 7((Fi) nigh"UxNUy)
The latter is equal to

/ (0 i) (A7 (my o G (u~7cl).
Ty((Fi)nighNUxNUy) Tx((Fi)nighMUxNUy)

which is justfe((Fi)nign) £y ((Fi)nigh)- =
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In Section 4.5ve defined the projection mags$,, IIy: M — M, sending X, Y, 2) to
the points %,0,2) and (Qy,2) respectively. We also had projections, 7y : X =
R? x T — R?, mapping X, y,t) to (x,0) and (Qy) respectively. Define the se,
R c M =R? x R as follows:

Q = m(9((Fi)nien)) x (hi,hi +1)

R = my(9((Fi)nign)) x (i + L, hi +L + 1).
The claims ofLemma 4.6remain true exactly as stated, and are proved in the same
way. Thus:

Lemma 4.18 For each i we have

(1) &((Fi)nign) < AArea(Q;)
(2) 4((Fi)nign) < p*-AreaR). ]

Next we adapProposition 4.%o the current situation.

Proposition 4.19 RArea@|r,,,) < ARAreaf)?™°90).

Proof As in the proof ofProposition 4.7 it suffices to show that Are@) <
RAreaf|5) and AreaR) < RAreaf|g) for eachi: since

RArea@|e),.,) < Au-Arealy)Aread)
by Proposition 4.1’andLemma 4.18we then have
RAreag|ry,.,) < Au"RAreaf|s)RAreaf|s)

for all i. Summing oveli, usingLemma 4.13 we obtain the desired inequality, by
Equation 9

We claim thatlly(q(f(B;))) contains a subset d® of full measure. Given a point in
R, itis determined by pointp € (Fi)nign andh € (hi +L,hy+L+1). Letp’ € W be
a point on the leaf of%?; throughp of heighth; such a point exists singe has height
h; and 7 (p) has heighth; + L + 1 or greater. Writeg(g(p')) as &y, Yy h) in the
coordinates oM, and note thati(9(p)) = (Xy, Yy, hi). Thusmy(g(p)) = (0, yy).

If o' € Uy thenm(p') is defined and is ifB;, and
Iy (x(P))) = (0,yy,h) = (my(9(P)), h).

Therefore this point oR is indeed in the image d8; underlly o qof. Thus we want
to verify thatp’ € Uy for almost all choices of#,(g(p)), h) € R:.
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Let R be the set of pairsn{,(g(p)), h) € R such thath is not an integer. LeK C X
be the intersection aj(W) with the 1—skeleton oX. Itis a finite graph, and its image
IIy(q(K)) has measure zero in tlyg—plane inM. Note also that all 2— and 3—-handles
of W map byg into K.

The pointp’ must be in the interior of a 0—handle or a horizontal 1-hand& p$ince

p € U,. In the latter casgy maps to a horizontal 2—cell &, and soh is an integer.
In the former case% is defined atp’. If p’ ¢ Uy then the (discarded) leaf offx
throughp’ meets a 2— or 3—-handle. Th&iy(q(g(p’))) is contained in the measure zero
setIly(q(K)). But II(a(a(p’))) is the original point £y(g(p)), h) € Ri. The argument
above therefore shows thHt,(q(f (B;))) containsR — I1,(q(K)), a subset o of full
measure.

Thus AredIy(q(f(B;))) > AreaR)). Sincelly is area-decreasing amdocally isomet-
ric, we conclude that RArefig) > AreaR). By a similar argument, RAref) >
Area@). |

The bound

We can now determine an upper bound #8f?(x). AssemblingLemma 4.14and
Propositionst.16 4.19and consolidating constants, we find that

1+ A +1)
11 Rwl(g) < (—22 =
1) ol < (Y
Recall that all 3—cells oK have the same volumé (and hence VGS(g) = % RVol(g)).
Let C be the largest Riemannian area of a 2—celKofor equivalently, ofX). Then
RAreaf) < CVol?(f), and byEquation 11we have

3 1+ AMp+1)
Vol(g) < <Vmw)

Therefore FVol'(f) < D(Vol?(f))?°9\) for a constantD depending only on the
original matrix A (which determined\, p, and the geometry oX). Since the 3—
manifold W was arbitrary, we have now established thd®(x) < Dx2H°9\(#)  and
therefored@(x) < A@(x) < x2t109\w)

) RAreaf)?09:\()

) (C VoI?(f))? o9,

5 The lower bound

To establish a lower bound fa?(x) we want a sequence of embedded bBls— X
whose volume growth is as large as possible, relative to the growth of boundary area.
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The optimal shape is a ball made from two half-balls, each contained in a cddy of
inside X, joined along their bottom faces. The half-ballshhwill need to have large
volume compared to “upper” boundary area.

For the half-balls, we begin by defining optimally proportioned regigns. M, which
are easy to measure in the Riemannian metric. Then we approximate these regions
combinatorially by subcomplexes;,.

Extremal Riemannian regions

In the coordinates o, define
Ry = [0,A"] x [0, (A)"] x [0, n].

The volume ofR, is easily computed by integration. Each horizontal slice\[{ x
[0, Aw)"] x z has area\"(A\u)"(Ap) %, and integrating in the—coordinate yields

1
In(Aw)

Recall that\y = det®) > 2. If n > 1 theni(A\p)" > 1, whence kp)"—1 > ().
Together withEquation 12his implies

(12) RVOI(Ry) = (A" )" = A").

1
2In(A\p)

1 m 2+10g, (1)
(13) 2y N

RVOI(R,) > AM(Ap)"

forn> 1.

Next we consider the areas of the various faceRpfThe top face has ared (taking
z = n, above). Next, the segment, '] x y x z has length\"A\~“. Integrating with
respect taz, we find that the faces [Q"] x 0 x [0, n] and [0, A"] x (Ax)" x [0, n] each
have are%()\” — 1). By a similar computation, the other two vertical faces each

have are%)\”(u” —1)= ﬁ)\”(l — M. Sincep < 1, this quantity is less than
1

m)\”. Now let 9+ R, denote the union of the five faces (omitting the bottom face)

of R,. We have shown that

(14) RArea@Ry) < (1+(2/InX) — (2/Inp))A™.
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Extremal combinatorial regions

Recall thatD is the matrixBAB™* = (3 9 ), andT is the latticeB(Z x Z), preserved
by D. Fix any standard copy d¥l inside X, corresponding to a line ¢ T. ThenM
is a subcomplex oK, and we need to understand its cell structure. Note ¥has a
union of subcomplexeR? x [i — 1,i] for i € Z. Consider the subcomplék® x [0, 1].
Possibly after a horizontal translation, the closed 3—cells are the &@}s< [0, 1], for
v in T (recall thatQ is a fundamental domain fdf acting onR?). Figure 2shows
the top and bottom faces of one of these 3—cells, in the case of no translation.

To be more specific, leF’ be the latticeD~X(I"), and note thal’ containsI’ as a
subgroup of indexd. Then the 3—cells aR? x [0, 1] are the sets/(Q) x [0, 1] where
~ ranges over a single cosetBfin I".

Continuing upward, the closed 3—cells®f x [i — 1, i] are the sets/(D'~1(Q)) x [i —

1,i], where~ ranges over a coset &'~ 1(I") in I'. The choice of coset depends on

the path inT followed by L from height 0 to height. (There ared' such paths, and
cosets.) Thus, the various copiesMfinside X have differing cell structures (with
respect to the standard coordinates), though at each height they agree up to horizontal
translation.

Fori = 1,2,... let Aj C R? be the union of the sides of(D'~(Q)) for ~ in the
appropriate coset dd'~}(I") in I'. ThenA; x i is a subcomplex oM, and in fact,
soisA; x [i — 1,i]. This latter subcomplex is the smallest subcomplex containing the
vertical 1—and 2—cells dR? x [i — 1, i].

Definition 5.1 Let w be the diameter o) (in R?, with the Euclidean metric). There
is a constank such that every horizontal or vertical line segment of lemgihtersects
A1 in at mostk points. We will callk thebacktracking constarfor X.

Lemma 5.2 Let W C R? be a region of the form [a,a+ W] x R or R x [a,a+ W].
Let m: W — R be projection onto the R factor. Then W N Aj contains a properly
embedded line ¢, and the restricted map 7. ¢ — R is at most K-to-one.

Proof The components dR? — A, are isometric copies of the interior . For the
first statement, note that an open set of diameateannot disconnedV, and SONVN A3
is connected and contains a line joining the two endg/of The second statement is
clear, since the fibers of are horizontal or vertical segments of length |
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Applying the mapD'—* (and possibly a translation) temma 5.%ields the following
result. Note thaD preserves the horizontal and vertical foliationsRst by lines. In
particular,D'~? takes fibers ofr to fibers.

Lemma 5.3 Let W C R? be a region of the form [a,a+ A~1w] x R or R x [a,a+
w=w]. Let m: W — R be projection onto the R factor. Then W N A; contains a
properly embedded line ¢, and the restricted map w: ¢ — R is at most K-to-one. 0O

Now we can proceed to define subcomplexes approximating the regjorGiven an
integern, we will define “slabs”§ n C R? x [i — 1,i] for i between 1 anah. The
union | J; S » will contain R,, and will have comparable volume and surface area (the
latter of which is controlled by the backtracking constétht The slabs will not fit
together perfectly: there will be under- and over-hanging portions, but the additional
surface area arising in this way is not excessive.

Fix n e Z, . Fori between 1 ana, consider the four strips
W = Rx [—4'"'w, 0]
W2 = [A" A"+ A ] x R
W = Rx [(\)", ()" + 1~ ]
WH = [-A"tw, 0] x R

which surround the rectangle,[®"] x [0, (Ax)"]. By Lemma 5.3 each of these strips
contains a properly embedded lineAn, projecting to thex— or y—axis in ak-to-one
fashion, at most. Choose segmefits W! in these lines which meet each other only in
their endpoints, forming an embedded quadrilateradliienclosing [QA"] x [0, (Ax)"].
Let D; be the closed region bounded by this quadrilateral, and defingldabe$,, to

be the subcomple®; x [i — 1,i] € M. LetS, = J; Sn.

Let W, be the rectangle delimited by the outermost sides of the swibs V\/iz,
Wi3, W4 and note thawV, , containsD;. The maximum width of these rectangles is
A2\ 1w = A"(14-2w/)\), and the maximum heightis\()"+2w < (Ax)"(142w).
Let x be the larger of log(1 + 2w/)\) and log, (1 + 2w). Then the rectangle with
lower-left corner at £ \"~1w, —w), of width A\"** and height §4)"*, containswi p
foralli. Let R, be Ry, translated by-A"~1w in the x—direction and by-w in
the y—direction. Then we have

RnCSnCR;PrK'

Let 1S, denote the largest subcomplex of the boundargofhich does not meet the
interior of the base oR, (that is, (Q\") x (0, (A\x)") x 0). Note thatd™S, has three
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parts: theop, Dy; thevertical part made of the seté x [i = 1,i]; and thehorizontal
part, contained in the union of the annuit , x i) — ((0, A") x (0, (Ap)") x i), for
i =0,...,n— 1. This last part contains the horizontal 2—cells of heigln the
symmetric differenceld; x i) A (Dj_1 x i), where the slabs fail to join perfectly.

Lemma 5.4 There is a constant C such that the Riemannian area of the top and
vertical parts of 01 S, is at most CRAreaQ ™R ,.).

Proof TranslatingD,, upward by, it becomes a subset of the top faceRjf,,..
Therefore its area is at moshy)" times the area of the top face & .. Next
consider the coordinate projections @fx [i — 1,i] onto the sides oR,, .. These
maps are at most-to-one, by the construction @f. Moreover, the Jacobians of these
maps are bounded below by sorde> 0, independent of. To see this, consider
for example the coordinate projection onto tkie-plane (the case of odd. On each
closed vertical 2—cell the Jacobian achieves a positive minimum, and there are finitely
many such cells modulo isometries bf. These isometries preserve tRe-plane
field, and hence also the Jacobian of this projection. The case ofzifprojection

is similar. Now the Riemannian area bf/._, # x [i — 1,i] is at mostk/J times the
area of one of the four sides &, , . (one side for eaclp). The result follows with

C = max{(A\w)"*, k/J}. O

Lemma 5.5 There is a constant D such that the Riemannian area of the horizontal
part of 0TS, is at most DA".

Proof Let A, be the annular regiof\Wi n x i) — ((0,A") x (0, (Aw)") x i). Then
RArea@ n) = (A" + 2w/X) (A" + 2w/p) — A"IA"
— ZW)\nflunfi + 2w nfiufl_'_4vv2(A'u)fl
20"+ AT Y 4 4w

/N

Hence the area of the horizontal part is at most

[y

n—

RArea@yn) < 2w(A" 1+ A\ = 1)/u() — 1)) + 4w?n

W.
o

< 2w(ATE A /(X — 1)) A" + 4wn.

Lastly, 4°n is less thar\%/\”, thus establishing the result. |
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The bound

Recall thatX contains isometric copies dfl, corresponding to lines iff. Choose
two such lined g, L; which coincide at negative heights and diverge at height 0. Let
Mo, M; be the corresponding copies bF in X. Let S, be the subcomples, of M;
constructed earlier (recall that the contruction depended on the cell structidg of
which varies withi). Let B, ¢ X be the subcomple$? U S.. It contains the two
copies ofR, in Mg andM1 (which meet along their bottom faces), and its boundary is
contained i+t U ot <.

Let a be the minimum Riemannian area of a 2—cellXaf CombiningEquation 14
with Lemmass.4and5.5, we have

(15) Vol2(9By) < (2/a) (C/\”(l +@/InN) = @/ Inw) + D) AN,
By Equation 13ve have

3 1 n\ 2-+0g, (1)

Vol*(Bn) > VinouD (A7) A
Thus there is a constar such that Vol(B,) > E(Vol?(9By))2>"°9%®) for all n.
By Remark 2.9 since S, is embedded inX, we haved@(x,) > E(x,)2H°9®) for
X = Vol?(8By). Lastly, it remains to show that the sequengg) {s not too sparse.
Recall that the tofD,, of S, contains the top face d&,, and the latter has ared'.
Thus VoP(0B,,) > KA for some constark . Together withEquation 1&his implies
that the ratios,/x,—1 are bounded. According to Remark 2.1 &f,[this property
suffices to conclude that?(x) »= x2H109 ()

6 Proof of Theorem 1.2

Sections4 and5 established the proof afheorem 1.1 Next we consider the groups
Gsia = GaxZ' and their {+2)—dimensional Dehn functions. The following definition
is taken from B].

Definition 6.1 Let G be a group of typeFi1 and geometric dimension at mdst 1.
The k—dimensional Dehn functioﬁg‘)(x) has embedded representativethere is a
finite aspherical K + 1)—complexX, a sequence of embeddekl{ 1)—dimensional
balls B; c X, and a functionF(x) ~ 5g‘)(x), such that the sequence given loy) (=
(VolX(8B)) tends to infinity and is exponentially bounded, and“V&(B;) > F(n;) for
eachi.



Density of isoperimetric spectra 35

The Dehn functionss®(x) for the groupsGa have embedded representatives, as
constructed irBection 5 We also have the following result frord][

Proposition 6.2 Let G be a group of type Fx+1 and geometric dimension at most
k 4+ 1. Suppose the k—dimensional Dehn function 60(X) of G is equivalent to x° and
has embedded representatives. Then G x Z has (K + 1)—dimensional Dehn function
s&+1(x) = x2~1/S, with embedded representatives.

The proof of Theorem 1.2now proceeds exactly as in Theorem D Bf.[ Let a =
2+log, (1) ands(i) = e We verify by induction ori the following statements
for Gsia.

(1) AH2(x) < &) for some constant > 0

(2) 6029 = X0

(3) 60t3(x) has embedded representatives

The first two statements together yield the desired conclusioR(x) ~ x3,

If i = 0 then (1) and (2) are the respective conclusions of Sectiand5, and (3) holds

as remarked above. For- 0 note first thass(i) = 2 — 1/s(i — 1). Then statement (1)
holds byTheorem 2.7and property (1) ofsyi-14. Proposition 6.2mplies (2) and (3)

by properties (1)—(3) 0Gy;i-14.-

7 Density of exponents

Inthis sectionAis a 2x 2 matrix with integer entries. Denote the trace and determinant
of A by t andd respectively. Note that the characteristic polynomiahdé given by

p(x) = X% — tx + d, and the eigenvalues are = @ andy = t*‘/t;*i“d. The

next lemma shows that under certain conditions, the leading eigenvalue can be roughly
approximated by the trace.

Lemma7.1l Ift>4andt>d>0then \,y € Rand t—4 < X < t.

Proof First,t > 4 andt > d imply that t2 > 4d, and therefore\, u € R. Next, A
is the average of and v/t?2 — 4d, and sovt? — 4d < A < t. It remains to show that
t — 4 < v/t2 — 4d. Note thaty/t?2 — 4t is the geometric mean af— 4 andt, and so it
lies betweent — 4 andt. Sincet > d, we now have — 4 < V12 — 4t < Vt2 — 4d, as
needed. m]
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Lemma 7.2 The function f(X,y) = log,(y) maps the set
S={(tdeNxN|2<d<t—4}

onto a dense subset of (0, 1).

Proof Givene > 0, fix an integett > €%/<. We will show that the pointst(2), (t,3),
..., {t,t —4) map to are—dense subset of (0).

Fixing x = t, the functionf (t, - ) maps [1t] homeomorphically onto [Al], and maps
[2,1] onto an interval containinge[ 1], by the choice ot. Sincefy = yTl(x) we have
Ify(t,y)| < Wl(t) < e/4 forally > 2, again by the choice df Therefore

ft,d) —f(t,d+ 1) < e/4

for all integersd > 2. Thus the image of the séft, 2), (,3), ..., ¢,t)} isc/4—dense
in (and includes the endpoints of) an interval containindl]. Omitting the last four
points, the remaining set is-dense in (01). O

Now we can prove the main result of this section.

Proposition 7.3 (Density) Given o € (1,2) and ¢ > 0, there is a matrix A €
M2(Z) with determinant d > 2 and eigenvalues A\, p with A > 1 > p such that

|(2+|OgA(u)) —a‘ < €.

Proof Given integerd andd, the matrix

Alt,d) = <; _g') e My(2)

has trace and determinantl (and eigenvalueg, i;). Note also that\y = d implies

that 2+ log, () = 1+ log,(d). Thus we need to choogeandd so that log(d) is
within ¢ of oo — 1.

First, choose a numbdr such that

4

(16) (t—4)Int—4)

< g/2
forallt > T.

Next, applyLemma 7.2to obtaint and d such that|log,(d) — (o — 1)] < ¢/2 and
2 <d < t—4. We may assume in addition thiat: T, since only finitely many points
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of Sviolate this condition, and omitting these frd&does not affect the conclusion of
the lemma. ByLemma 7.1we have

a7) 2<d<gt—-4< A<t
Note thatf(x,y) = log,(y) has partial derivativé, = % Along the segment
{(x,y) |[t—4<x<t, y=d} we have

< In(d) . 1

t—4Int—4)Int—4) = (t—4)Int—4)
This implies (withEquation 1§ that

log_(@) ~ loa(@)] < G—gria—g < /2

t—4)Int—4)
Now, since) is betweernt — 4 andt, we have

llog,(d) —log(d)| < ¢/2,
and hence log(d) is within € of oo — 1.

Lastly, the inequality: < 1 reduces ta < t — 1, which holds byEquation 17 The
inequality A > 1 is clear since > 2. |
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