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We show that the set ofk–dimensional isoperimetric exponents of finitely presented
groups is dense in the interval [1,∞) for k > 2. Hence there is no higher-
dimensional analogue of Gromov’s gap (1, 2) in the isoperimetric spectrum.
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1 Introduction

Dehn functions of groups have been the subject of intense activity over the past two
decades. The Dehn functionδ(x) of a groupG is a quasi-isometry invariant which
describes the best possible isoperimetric inequality that holds in any geometric model
for the group. Specifically, for a givenx, δ(x) is the smallest numberA such that every
null-homotopic loop of length at mostx bounds a disk of areaA or less. One defines
length and area combinatorially, based on a presentation 2–complex forG, and the
resulting Dehn function is well defined up to coarse Lipschitz equivalence. IfG is the
fundamental group of a closed Riemannian manifoldM , then ordinary length and area
in M may be used instead, and one obtains an equivalent function. (This seemingly
modest but non-trivial result is sometimes called the Filling Theorem; see Bridson [6]
or Burillo and Taback [9] for a proof.)

Due in large part to the work of Birget, Rips and Sapir [24] we now have a fairly
complete understanding of which functions are Dehn functions of finitely presented
groups. In the case of power functions, one defines theisoperimetric spectrumto be
the following (countable) subset of the line:

IP = {α ∈ [1,∞) | f (x) = xα is equivalent to a Dehn function}.

We know from Brady and Bridson [4] that the isoperimetric spectrum has closure
{1} ∪ [2,∞) and, from Brady, Bridson, Forester and Shankar [5], that it contains all
rational numbers in [2,∞). Moreover, in the range (4,∞), it contains (almost exactly)
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those numbers having computational complexity below a certain threshold [24]. The
gap (1, 2) reflects Gromov’s theorem to the effect that every finitely presented group
with sub-quadratic Dehn function is hyperbolic, and hence has linear Dehn function.
Several proofs of this result are known: see Gromov [16], Ol ′shanskĭı [20], Papasoglu
[21] and Bowditch [3].

By analogy with ordinary Dehn functions, one defines thek–dimensional Dehn function
δ(k)(x), describing the optimalk–dimensional isoperimetric inequality that holds inG.
Given x, δ(k)(x) is the smallestV such that everyk–dimensional sphere of volume at
mostx bounds a (k+1)–dimensional ball of volumeV or less. One uses combinatorial
notions of volume, based on a chosenk–connected model forG. Again, up to coarse
Lipschitz equivalence,δ(k)(x) is preserved by quasi-isometries, by Alonso, Wang and
Pride [2], and in particular does not depend on the choice of model forG.

Precise details regarding the definition ofδ(k)(x) are given inSection 2. Nevertheless, it
is worth emphasizing here that we are filling spheres with balls, which is quite different
from filling spheres with chains, or cycles with chains (the latter of which leads to the
homological Dehn function). It turns out that we do indeed need to make use of other
variants (namely, thestrong Dehn function– seeSection 2), but for us the primary
object of most immediate geometric interest is the Dehn function as described above.

In this paper we are concerned with the following question: what is the possible
isoperimetric behavior of groups, in various dimensions? For each positive integerk
one defines thek–dimensional isoperimetric spectrum:

IP(k) = {α ∈ [1,∞) | f (x) = xα is equivalent to ak–dimensional Dehn function}.

Until recently, relatively little was known about IP(k) , especially whenk > 3. A
few results concerning IP(2) were known. Alonso, Bogley, Burton, Pride and Wang
[1, 27, 26] have shown that IP(2) contains infinitely many points in the interval [3/2, 2),
and they located various lower and upper bounds throughout [2,∞). Also Brady and
Bridson [4] and Bridson [7] have shown that IP(2) ∩ [3/2, 2) is dense in [3/2, 2) and
that 2, 3 ∈ IP(2).

The recent paper of Brady, Bridson, Forester and Shankar [5] established that IP(k) is
dense in [1+ 1

k ,∞) and contains all rational numbers in this range. The endpoint 1+ 1
k

corresponds to the isoperimetric inequality represented by spheres in Euclidean space.
The main purpose of the present paper is to address the sub-Euclidean range (1, 1+ 1

k)
and establish the existence of isoperimetric exponents throughout this interval, for
k > 2.
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To state our results we need some notation. IfA is a non-singularn×n integer matrix,
let GA denote the ascending HNN extension ofZn with monodromyA. Our first result
is the following.

Theorem 1.1 Let A be a 2× 2 integer matrix with eigenvalues λ, µ such that λ >

1 > µ and λµ > 1. Then the 2–dimensional Dehn function of GA is equivalent to
x2+logλ(µ) .

In Section 7we show that the exponents arising in the theorem are dense in the interval
(1, 2). Thus, roughly half of these groups have sub-Euclidean filling volume for
2–spheres, occupying densely the desired range of possible behavior.

Given ann× n matrix A, thesuspensionΣA of A is the (n + 1)× (n + 1) matrix
obtained by direct sum with the 1× 1 identity matrix. SinceGΣA

∼= GA × Z, results
from [5] imply the following (seeSection 6for details).

Theorem 1.2 Let GA be as in Theorem 1.1. Then the (i + 2)–dimensional Dehn
function of GΣiA is equivalent to xs where s = (i+1)α−i

iα−(i−1) and α = 2 + logλ(µ).

Given that the numbersα are dense in the interval (1, 2), it follows that the exponents
s are dense in (1, (i + 2)/(i + 1)). Together with Corollary E of [5], we have the
following result, illustrated inFigure 1.

Corollary 1.3 IP(k) is dense in [1,∞) for k > 2.
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Figure 1: Isoperimetric exponents ofGΣiA . The blue intervals indicate isoperimetric exponents
for the groups constructed in [5].
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Methods

The methods used here to establish isoperimetric inequalities forGA are quite different
from those used in [5]. In the latter work, a slicing argument was used to estimate
volume based on information coming from one-dimensional Dehn functions. This
approach is rather less promising in the sub-Euclidean realm, since there are no one-
dimensional Dehn functions there to reduce to. (Reducing to larger Dehn functions
does not seem feasible, at least by similar methods.)

Instead we must find and measure least-volume fillings of 2–spheres inGA directly,
using properties of the particular geometry of this group. We work with a piecewise
Riemannian cell complex with a metric locally modeled on a solvable Lie groupR2oR.
This metric is particularly simple from the point of view of the given coordinates, and
these preferred coordinates make possible various volume and area calculations that
are central to our arguments.

The preferred coordinates just mentioned do not behave well combinatorially, however.
Coordinate lines pass through cells in an aperiodic manner, and this cannot be remedied
by simply changing the cell structure. If one attempts to measure volume combina-
torially, counting cells by passing between cells and their neighbors in an organized
fashion (as with “t–corridor” arguments, for example), one loses the advantage of the
preferred coordinates conferred by the special geometry of these groups. To count
cells, therefore, we use integration and divide by the volume of a cell.

The combinatorial structure is still relevant, however. The piecewise Riemannian
model is not a manifold, and its branching behavior is a prominent feature of the
geometry ofGA. In order to make clean transitions between the combinatorial and
Riemannian viewpoints, we use the transversality technology of Buoncristiano, Rourke
and Sanderson [8]. This provides the appropriate notion of van Kampen diagrams for
higher-dimensional spheres and fillings. Transversality also helps in dealing with
singular maps, which otherwise present technical difficulties.

One other technical matter deserves mention: in order to apply results of [5] to deduce
Theorem 1.2, we are obliged to find bounds for thestrong Dehn function, which encodes
uniform isoperimetric inequalities for fillings of surfaces by arbitrary 3–manifolds. See
Section 2for definitions and results concerning the strong Dehn function.

Remark/Conjecture 1.4 The groupsGA in Theorem 1.1were classified up to quasi-
isometry by Farb and Mosher [14]. At the time, none of the usual quasi-isometry
invariants could distinguish these groups, but the two-dimensional Dehn function ap-
parently does so quite well. We conjecture that it is a complete invariant for this class
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of groups. What is missing is the knowledge that the real number logλ(µ) determines
the diagonal matrix

(
λ
0

0
µ

)
up to a rational power. One needs to take into account the

specific assumptions on the integer matrixA (eg having a contracting eigenspace), to
rule out examples such as

(
4
0

0
2

)
and

(
9
0

0
3

)
.

Acknowledgments Brady’s work was funded in part by NSF grant DMS-0505707,
and Forester’s by NSF grant DMS-0605137.

2 Preliminaries

In this section we discuss in detail some of the key notions needed to carry out the
proofs of the theorems. First we give a brief account of the transversality theory of
Buoncristiano, Rourke and Sanderson. Then we discuss volume, Dehn functions of
various types, and some basic results concerning these.

Handles and transverse maps

Using transversality, a map from a manifold to a cell complex can be put into a nice form,
called a transverse map. Transverse maps inducegeneralized handle decomopositions
of manifolds, which will play the role of van Kampen diagrams in higher dimensions.
Whereasadmissible mapswere used for this purpose in [5], transverse maps have
additional structure, incorporating combinatorial information dependent on the way
cells meet locally in the target complex.

An index i handle(or generalized handle) of dimensionn is a productΣi × Dn−i ,
whereΣi is a compact, connectedi–dimensional manifold with boundary, andDn−i

is a closed disk. LetM be a closedn–manifold. Ageneralized handle decomposition
of M is a filtration ∅ = M(−1) ⊂ M(0) ⊂ · · · ⊂ M(n) = M by codimension-zero
submanifolds, such that for eachi , M(i) is obtained fromM(i−1) by attaching finitely
many indexi handles, as follows. To attach a single handleH = Σi ×Dn−i , choose an
embeddingh: ∂Σi ×Dn−i → ∂M(i−1) and form the manifoldM(i−1) ∪h H . Note that
handle attachment is always along∂Σi ×Dn−i , and never alongΣi ×∂Dn−i . To attach
several handles, we require that the attaching maps have disjoint images in∂M(i−1), so
that the order of attachment does not matter. Note that bothM(i−1) and the individual
handlesH are embedded inM(i) .

If every Σi is a disk then this is the usual notion of handle decomposition arising in
classical Morse theory. Some new things can occur by varyingΣi , however. For



6 Noel Brady and Max Forester

instance, we allowΣi to be closed, in which case the attaching map is empty and
M(i−1) ∪h H is the disjoint unionM(i−1) t H . Such a handle is called afloating
handle. For example,M(0) is formed fromM(−1) = ∅ by attaching (floating) 0–
handlesD0×Dn, andM(0) is simply several copies ofDn. (The lowest-index handles
will always be floating ones.) Another phenomenon is that handles may be embedded
in M in topologically interesting ways, as in the following example.

Example 2.1 Given a closed orientable 3–manifoldM , we may construct a gener-
alized handle decomposition as follows. LetK ⊂ M be a knot or link inM . Let
M(1) be a regular neighborhood ofK and declare each component to be a (floating)
1–handle. LetΣ be a Seifert surface forK , and let {Σj} be the components of
Σ ∩ (M − int(M(1))). The 2–handles will be regular neighborhoods of the surfacesΣj

in M− int(M(1)). Lastly, the 3–handles will be the components ofM− int(M(2)). This
decomposition has no 0–handles, and its 1–handles are (obviously) knotted.

Now supposeM is ann–manifold with boundary. Ageneralized handle decomposition
of M is a pair of filtrations∅ = M(−1) ⊂ M(0) ⊂ · · · ⊂ M(n) = M and∅ = N(−1) ⊂
N(0) ⊂ · · · ⊂ N(n−1) = ∂M by codimension-zero submanifolds, such that:

(1) the filtration∅ = N(−1) ⊂ N(0) ⊂ · · · ⊂ N(n−1) = ∂M is a generalized handle
decomposition of∂M ,

(2) for eachi , M(i) is obtained fromM(i−1)∪N(i−1) by attaching finitely many index
i handles, and

(3) each indexi − 1 handle of∂M is a connected component of the intersection of
∂M with an indexi handle ofM . In particular,N(i−1) = ∂M ∩M(i) for all i .

In (2) each handleH = Σi × Dn−i is attached via an embeddingh: (∂Σi × Dn−i) →
(∂M(i−1)∪N(i−1)). As before, we require the images of the attaching maps of the index
i handles to be disjoint. It follows that the individuali–handles are embedded inM ,
and are disjoint from each other.

Let f : M → X be a map from a compactn–manifold to a CW complex. We say that
f is transverseto the cell structure ofX if M has a generalized handle decomposition
such that the restriction off to each handle is given by projection onto the second
factor, followed by the characteristic map of a cell ofX. Thus, indexi handles map
to (n− i)–dimensional cells. In particular,M maps into then–skeleton ofX. In a
transverse map there may be floating handles of any index, and it may not be possible
to modify f to eliminate these. By the same token, one must always allow for the
possibility of knotted handles.
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One virtue of transverse maps is that they can easily be proved to exist. However, to
accomplish this, we must assume additional structure on the target complexX. We say
that X is a transverse CW complexif the attaching map of every cell is transverse to
the cell structure of the skeleton to which it is attached. The main existence result is
the following:

Transversality Theorem (Buoncristiano–Rourke–Sanderson)Let M be a compact
smooth manifold and f : M → X a continuous map into a transverse CW complex.
Suppose f |∂M is transverse. Then f is homotopic rel ∂M to a transverse map g: M →
X.

The theorem includes the case whereM is closed: all maps of closed manifolds can
be made transverse by a homotopy.

This theorem is proved in Buoncristiano–Rourke–Sanderson [8] for PL manifolds,
and the proof in the smooth case is entirely analogous. The proof is a step by step
application of smooth transversality, applied to preimages of open cells (considered
as smooth manifolds themselves), starting with the top dimensional cells and working
down. The first stage of the argument, in which the 0–handles are constructed, is
explained fully in the proof of Lemma 2.3 of [5]. This is precisely the construction of
admissible maps (defined below).

Remark 2.2 In order to apply the theorem one needs transverse CW complexes.
Any CW complex can be made transverse by successively homotoping the attaching
maps of its cells (by the Transversality Theorem and induction on dimension); this
procedure preserves homotopy type. Moreover, in this paper, the complexX that we
use can be made transverse in a more direct and controlled way, preserving both its
homeomorphism type and its partition into open cells; seeSection 3andFigure 3.

Admissible maps and combinatorial volume

Recall from [5] the definition of anadmissible map: it is a mapf : Mn → X(n) ⊂ X
such that the preimage of every openn–cell is a disjoint union of openn–dimensional
balls in M , each mapped byf homeomorphically onto then–cell. Thecombinatorial
volumeof an admissible map, denoted Voln(f ), is the number of open balls mapping
to n–cells.

It is clear that transverse maps are admissible: the interiors of 0–handles are open
balls, and the rest ofM maps intoX(n−1). Conversely, if one applies the proof
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of the transversality theorem to an admissible map to make it transverse, then the
preimages of then–cells will not change (except possibly by being shrunk slightly),
and combinatorial volume is preserved. For this reason, given an admissible map, the
closures of the open balls mapping ton–cells will be called 0–handles.

Note that in an admissible map, 0–handles may intersect each other in their boundaries.
For example, ifM has a cell structure, then the identity map is admissible, with 0–
handles equal to the closures of the top-dimensional cells.

In [5, Lemma 2.3] it is shown that every map from a smooth or PL manifold is
homotopic to an admissible map. This is a special case of the Transversality Theorem,
though it is not required that the target CW complex be transverse. The existence of
admissible maps can also be proved without relying on a smooth or PL structure; see
Epstein [11, Theorem 4.3].

Volume reduction

In this paper, generalized handle decompositions (and transverse maps) will serve
as higher-dimensional analogues of van Kampen diagrams. Indeed, in dimension
2, transverse maps already provide an alternative to the combinatorial approach to
diagrams, and they have several advantages. This is the viewpoint taken in Rourke
[23] and Stallings [25], for example. With van Kampen diagrams one often considers
reduceddiagrams, where no folded cell pairs occur. The same type of cancellation
process also works for admissible and transverse maps. One such process is given as
follows.

Let f : Mn → X be an admissible map, and letH0, H1 ⊂ M be 0–handles, and
α ⊂ M − (int(H0) ∪ int(H1)) a 1–dimensional submanifold homeomorphic to an
interval, with endpoints inH0 andH1 (we also allow the degenerate case in whichα

is a point inH0 ∩ H1). Suppose thatf mapsα to a point and mapsH0 andH1 to the
samen–cell, with opposite orientations (relative to a neighborhood ofH0 ∪ α ∪ H1,
which is always orientable). A typical example occurs whenf is transverse andα is a
fiber of a 1-handle joiningH0 andH1.

SinceH0 and H1 are 0-handles, there are homeomorphismshi : Hi → Dn such that
f |Hi = Φ◦hi for some characteristic mapΦ : Dn → X. Now delete interiors ofHi from
M to obtainM′ with new boundary spheresSi . Next delete the interior of a regular
neighborhoodI × Dn−1 of α in M′ (parametrized so thatf |{0}×Dn−1 = f |{1}×Dn−1 ).
The new boundary becomes a union of two disksDi and an annulusA = I × Sn−2.
Now collapseA to Sn−2 and identifyD0 with D1 via h−1

0 ◦ h1, to form M′′ . This new
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space maps toX by f , and there is a homeomorphismg: M → M′′ . Now f ◦ g is
an admissible mapM → X with two fewer 0-handles. Note that the other 0-handles
are unchanged. If desired, this new map can then be made transverse, with the same
0-handles, and with its (lowered) volume unchanged.

Remark 2.3 There is, in fact, a more general procedure for cancellingH0 andH1 that
does not requireα to map to a point. This procedure is due to Hopf [19] and a detailed
treatment was given by Epstein [11]. If X is 2–dimensional then the more general
procedure is not particularly useful: new 0–handle pairs can be created when cancelling
H0 andH1, and volume may fail to decrease. In higher dimensions, however, no new
0–handle pairs are created and the volume will always decrease by 2.

Riemannian volume

If N is a smooth manifold,M an oriented Riemannian manifold of the same dimension,
and f : N → M a smooth map, then thevolumeof f can be defined. Following
Gromov [17, Remarks 2.7 and 2.812 ], let νM be the volume form onM and choose any
Riemannian metric onN. We define

RVol(f ) =
∫

N
f ∗(|νM|).

The integral is independent of the choice of metric onN, by the change of variables
formula. Note that we are using|vol| (f ), not vol(f ), in the notation of [17]. (The
latter allows cancellation of volume, which is not appropriate in our setting.) In fact,
we need not assume thatM is oriented, since|νM| is still defined. If dimN = 2 then
RVol is also denoted RArea.

If f is an immersion then this definition amounts to givingN the pullback metric and
taking the volume ofN. More generally, iff fails to be an immersion at somex ∈ N,
then f ∗(|νM|) is zero atx, and does not contribute to volume. Hence, RVol(f ) is the
volume of the pullback metric onU ⊂ N, the set on whichf is an immersion. Note
that U is open, and hence is a Riemannian manifold. Generically,U has full measure
in N when dimN 6 dimM ; see eg Gromov [15, 1.3.1].

From this perspective, we can now define RVol(f ) when dimN 6= dimM . We define
RVol(f ) to be the volume ofU ⊂ N, the set on whichf is an immersion, with the
pullback metric. Note that RVol(f ) measuresn–dimensional volume, where n =
dimN.

Lastly, we wish to extend the definition of volume to allow a piecewise Riemannian
CW complex in place ofM . The complexX̃ that interests us is a 3–complex with
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branching locus a 2–manifold, homeomorphic to the product ofR2 with a simplicial
tree. In a neighborhood of any singular point one sees a union of half-spaces joined
along their boundaries, naturally grouped into two collections, with a well defined
common tangent space at the singular point. The situation is similar to that of a train
track, or a branched surface from lamination theory (eg Calegari [10, Section 6.3]).
There is a smooth structure, andX̃ comes equipped with an immersionq: X̃ → M onto
a Riemannian manifoldM . (This immersion is not locally injective, but is injective on
tangent spaces.) The Riemannian metric onX̃ is the pullback underq of the metric on
M . The volume RVol(f ) can now be defined directly (as above) using this metric on
X̃, or equivalently by defining RVol(f ) = RVol(q ◦ f ).

Remarks 2.4 (1) If dim N > dimM (or dimN > dim X̃) then RVol(f ) is zero, since
f is an immerison nowhere. Similarly, iff factors through a manifold of smaller
dimension, then the volume is zero.

(2) Any transverse mapf : N → X̃ is piecewise smooth, and is a submersion on each
handle. It will be an immersion only on the 0–handles. This latter statement also
holds for admissible maps, since the complement of the 0–handles is mapped into a
lower-dimensional skeleton.

Remark 2.5 We will be interested in finding least-volume maps extending a given
boundary map. If the set of volumes ofn–cells of a piecewise Riemannian CW
complex is finite, then least-volume transverse maps ofn–manifolds exist in any
homotopy class. This is because the Riemannian volume of a transverse map is a
positivelinear combination of numbers in this set, and hence the set of such volumes
is discrete, and well-ordered.

Dehn functions

Here we recall the definition of then–dimensional Dehn function of a group from
[5]. Note that these definitions all use combinatorial volume. Given a groupG of
type Fn+1, fix an aspherical CW complexX with fundamental groupG and finite
(n+1)–skeleton (the existence of such anX is the meaning of “typeFn+1”). Let X̃ be
the universal cover ofX. If f : Sn → X̃ is an admissible map, define thefilling volume
of f to be the minimal volume of an admissible extension off to Bn+1:

FVol(f ) = min{Voln+1(g) | g: Bn+1 → X̃, g|∂Bn+1 = f }.
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Note that extensions exist sinceπn(X̃) is trivial, and any extension can be made
admissible, by [5, Lemma 2.3]. We define then–dimensional Dehn functionof X to
be

δ(n)(x) = sup{FVol(f ) | f : Sn → X̃, Voln(f ) 6 x}.

Again, the mapsf are assumed to be admissible.

In Alonso–Wang–Pride [2] it was shown thatδ(n)(x) is finite for eachx ∈ N, and that,
up to coarse Lipschitz equivalence,δ(n)(x) depends only onG. Thus the Dehn function
will sometimes be denotedδ(n)

G (x). (Recall that functionsf , g: R+ → R+ arecoarse
Lipschitz equivalentif f 4 g and g 4 f , wheref 4 g means that there is a positive
constantC such thatf (x) 6 C g(Cx) + Cx for all x > 0.) If we wish to specifyδ(n)(x)
exactly, we may denote it asδ(n)

X (x).

Taking n = 1 yields the usual Dehn functionδ(x) of a groupG.

The strong Dehn function

The notion ofn–dimensional Dehn function was modified in [5] to allow fillings by
compact manifolds other than the ballBn+1. In this way, every compact manifold pair
(M, ∂M) gave rise to a Dehn functionδM(x). Several of the main results proved in [5]
had hypotheses and conclusions involving the functionsδM(x) “for all n–manifolds
M .” An equivalent way of formulating these results is by means of thestrong Dehn
function, defined as follows.

Given a compact (n + 1)–manifoldM and an admissible mapf : ∂M → X̃, define

FVolM(f ) = min{Voln+1(g) | g: M → X̃ admissible, g|∂M = f }

and

∆(n)(x) = sup{FVolM(f ) | (M, ∂M) is a compact (n + 1)–manifold,

f : ∂M → X̃ admissible, Voln(f ) 6 x}.

We call∆(n)(x) thestrong n–dimensional Dehn functionof X. Note that the manifolds
M appearing in the definition are not assumed to be connected. The statement∆(n)(x) 6
y means that for every compact manifold (M, ∂M) and every admissible mapf : ∂M →
X̃ of volume at mostx, there is an admissible extension toM of volume at mosty. In
particular, the boundy is uniform for all topological types of fillings (hence the word
“strong”). Note that this is very different fromhomologicalDehn functions, where
only a single filling by an (n + 1)–chain is needed, of some topological type.
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The strong Dehn function has two principal features. The first is that it behaves well
with respect to splittings and mapping torus constructions (as does the homological
Dehn function). The next two theorems below are examples of this phenomenon. The
second is that it (clearly) satisfies

(1) δ(n)(x) 6 ∆(n)(x)

and hence it may be used to establish upper bounds forδ(n)(x). To this end, the
following two theorems are proved in [5] (Theorems 7.2 and 8.1).

Theorem 2.6 (Stability for Upper Bounds)Let X be a finite aspherical CW complex
of dimension at most n + 1. Let f : X → X be a π1–injective map and let Y be the
mapping torus of X using f . Then ∆(n+1)

Y (x) 6 ∆(n)
X (x).

Thus, any upper bound for∆(n)
X (x) remains an upper bound for∆(n+1)

Y (x). A similar
result holds more generally (with the same proof) ifY is the total space of a graph of
spaces whose vertex and edge spaces satisfy the hypotheses ofX. Then the conclusion
is that∆(n+1)

Y (x) 6 C∆(n)
X (x) for someC > 0.

The next result provides a better bound in a special case.

Theorem 2.7 (Products withS1) Let X be a finite aspherical CW complex of
dimension at most n + 1. If ∆(n)

X (x) 6 Cxs for some C > 0 and s > 1 then
∆(n+1)

X×S1 (x) 6 C1/sx2−1/s.

It turns out that forn > 3 and forn = 1, there is no significant difference between the
strong and ordinary Dehn functions. The precise relation between them is stated in the
next theorem, which was essentially proved already in Remark 2.5(4) and Lemma 7.4
of [5].

However, we do indeed need to work specifically with the strong Dehn function in
dimension 2, since we wish to applyTheorem 2.7above. This case forms the base of
the induction argument we use to show that IP(n) is dense for alln > 2.

A function f : N → N is superadditiveif f (a) + f (b) 6 f (a+ b) for all a, b ∈ N. The
superadditive closureof f is the smallest superadditiveg such thatf (x) 6 g(x) for all
x. An explicit recursive definition ofg is given by

g(0) = f (0), g(x) = max{{g(i) + g(x− i) | i = 1, . . . , x− 1} ∪ {g(0) + f (x)}}.

It is easy to verify that∆(n)(x) is always superadditive, by considering fillings by
non-connected manifolds.
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Theorem 2.8 (Brady–Bridson–Forester–Shankar)∆(n)
X (x) is the superadditive clo-

sure of δ(n)
X (x) for n > 3 and for n = 1.

It is not known whether there exist groupsG for which δ(n)
G (x) is not superadditive (up

to coarse Lipschitz equivalence). Indeed, whenn = 1, Sapir has conjectured that this
does not occur [18]. So in all known examples,∆(n) and δ(n) agree (forn > 3 or
n = 1).

In contrast, Young [28] has shown that the statement of the theorem is false when
n = 2. Specifically, he shows that for a certain groupG, the strong Dehn function
∆(2)

G (x) is not bounded by a recursive function, whereasδ(2)
G (x) always satisfies such a

bound, by Papasoglu [22]. The superadditive closure will inherit this property, since it
is computable fromδ(2)

G (x).

Proof Let s(x) be the superadditive closure ofδ(n)(x).

If n = 1 then the proof of Lemma 7.4 of [5] shows directly that for any compact
2–manifoldM , one hasδM(x) 6 δD2t···tD2

(x), where the number of disks equals the
number of boundary components ofM . For each admissiblef : S1t· · ·tS1 → X with
lengthx =

∑
i xi we have FVolD

2t···tD2
(f ) 6

∑
i δ

(1)(xi) 6 s(x), and soδM(x) 6 s(x).
Therefore∆(1)(x) 6 s(x). Since∆(1)(x) is superadditive andδ(1)(x) 6 ∆(1)(x), it
follows that∆(1)(x) = s(x).

If n > 3 then the argument given in Remark 2.5(4) of [5] applies. Let{Ni} be the
components of∂M and suppose thatgi : Ni → X are admissible maps of volumexi ,
with union g: ∂M → X of volumex =

∑
i xi . By the argument given in [5], for each

i there is an admissible homotopy of (n+1)–dimensional volume at mostδ(n)(xi) to an
admissible mapg′i : Ni → X with image insideX(n−1). The union of these maps can
be filled by a mapM → X(n) , sinceX(n−1) is contractible insideX(n) . This filling has
zero (n + 1)–dimensional volume, and hence FVolM(g) 6

∑
i δ

(n)(xi) 6 s(x). Since
M andg were arbitrary, we have∆(n)(x) 6 s(x), and hence∆(n)(x) = s(x).

Remark 2.9 (Lower bounds) As noted earlier, the strong Dehn function can be used
to boundδ(n)(x) from above. For a lower bound one needs explicit information about
FVol(f ) for admissible mapsf : Sn → X̃. That is, one needs to identifyleast-volume
extensionsg: Bn+1 → X̃. Suppose dim̃X = n + 1 andHn+1(X̃; Z) = 0. Then a
simple homological argument, sketched in Remarks 2.2 and 2.6 of [5], shows thatg is
least-volume ifg is injective on the interiors of 0–handles (i.e. no two 0–handles map
to the same cell of̃X). For convenience we provide the full argument here.
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Let Cn+1(X̃) be the cellular chain group for̃X. Given an oriented manifoldMn+1 and
a transverse mapf : Mn+1 → X̃, there is a chain [f ] ∈ Cn+1(X̃) defined as follows.
For each (n+1)–celleα , let σα be the corresponding generator ofCn+1(X̃) and define
dα(f ) to be the local degree off at eα (i.e. the number of 0–handles off mapping
to eα , counted with respect to orientations). We define [f ] =

∑
α dα(f )σα . Note that

the boundary of [f ] in Cn(X̃) is simply [f |∂M]. (Here the transversality structure is
used: 0–handles in∂M are joined to 0–handles inM by 1–handles, compatibly with
boundaries of characteristic maps of cells inX̃.)

Now suppose thatg: Bn+1 → X̃ is injective on 0–handles, andh: Bn+1 → X̃ is
another transverse map withh|Sn = g|Sn . These maps together define a transverse map
g− h: Sn+1 → X̃ by consideringSn+1 as a union of two balls, with the orientation
on one of the balls reversed. We have [g − h] = [g] − [h] in Cn+1(X̃), and so
∂[g − h] = ∂[g] − ∂[h] = 0, and [g − h] is a cycle. SinceHn+1(X̃) = 0 and
Cn+2(X̃) = 0, this cycle must be zero inCn+1(X̃). That is,g− h has zero local degree
at every (n + 1)–cell. Hencedα(g) = dα(h) for all α.

The injectivity assumption ong implies that Voln+1(g) =
∑

α |dα(g)|. Then we have

Voln+1(h) >
∑
α

|dα(h)| =
∑
α

|dα(g)| = Voln+1(g),

and henceg is least-volume.

3 The groupsGA and their model spaces

The model manifold M

Let M be the manifoldR3 with the metricds2 = λ−2zdx2 + µ−2zdy2 + dz2, where
λ > 1, µ < 1, andλµ > 1. This is the left-invariant metric for the solvable Lie group
R2 oR, with z∈ R acting onR2 by the matrix

(
λz

0
0
µz

)
. The geometry ofM has much

in common with that of SOL (the caseλµ = 1), but with some important differences.

The group GA and its model spaceX

Let A ∈ M2(Z) be a hyperbolic matrix with eigenvaluesλ > 1 and µ < 1 and
determinantd = λµ > 1. Let B ∈ GL2(R) diagonalizeA, so thatBAB−1 =

(
λ
0

0
µ

)
.

Call this diagonal matrixD. ThenD preserves the latticeΓ ⊂ R2, defined to be the
image ofZ× Z underB.
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Let GA be the ascending HNN extension ofZ× Z with monodromyA. That is,

GA = 〈Z× Z, t | tvt−1 = Av for all v ∈ Z× Z 〉.

The matrix B defines an isomorphism fromGA to the (non-discrete) subgroup of
R2 o R generated byΓ and 1∈ R (corresponding to the stable lettert ∈ GA).

The groupsGA are the main examples that interest us in this paper; our chief task
will be determining their 2–dimensional Dehn functionsδ(2)(x). For this we need to
construct a geometric model forGA. Note thatR2 o R cannot serve as a model since
the subgroupGA is not discrete. (Indeed, this Lie group is not quasi-isometric toany
finitely generated group, by Eskin, Fisher and Whyte [12].)

Topologically, our model is formed fromT2× I by glueingT2×0 to T2×1 by thed–
fold covering mapTA : T2 → T2 induced byA. To put a piecewise Riemannian metric
on this space, we use the geometry ofM as follows. The construction is analogous
to building the standard presentation 2–complex of a Baumslag–Solitar group from a
“horobrick” in the hyperbolic plane, as in Farb–Mosher [13].

Let Q ⊂ R2 be the parallelogram spanned by the generators ofΓ. ThenQ× [0, 1]
is a fundamental domain for the action ofΓ on R2 × [0, 1] ⊂ R2 o R, with quotient
homeomorphic toT2 × [0, 1]. The isometryR2 × 0 → R2 × 1 given by (x, y, 0) 7→
(λx, µy, 1) is Γ–equivariant and induces a local isometryR2/Γ×0→ R2/Γ×1. This
local isometry agrees precisely with the mapTA : T2 → T2 under the identification of
R2/Γ with T2 induced byB. Thus, identifying opposite sides ofQ× [0, 1] to obtain
a copy ofT2× [0, 1], the glueingT2×0→ T2×1 is locally isometric, and the model
for GA is a piecewise Riemannian space. Call itX, and its universal cover̃X.

Figure 2 below showsQ and the locally isometric glueing map for the example
A =

(
4
1

2
1

)
. The diagonal matrix stretches horizontally and compresses vertically.

3.1 The cover X̃ is tiled by isometric copies ofQ × [0, 1], with tiles meeting
isometrically along faces. A generic point in the top faceQ× 1 of a tile meetsd tiles
in their bottom faces; side faces are joined in pairs. Topologically,X̃ is a branched
space homeomorphic toR2 × T , whereT is the Bass–Serre tree corresponding to the
splitting of GA as an ascending HNN extension. TheGA–treeT has a fixed endη and
there is an equivariant maph0 : T → R, sendingη to −∞ and all other ends to∞,
such that the inducedGA–action onR is by integer translations. The preimage ofZ
under this map is the set of vertices ofT .

There is a locally isometric surjectionq: X̃ → M which, viewed via the homeomor-
phismsX̃ ∼= R2 × T and M ∼= R2 × R, is given by the identity onR2 and the map
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Q× 0 Q× 1

(
λ
0

0
µ

)

Figure 2: The regionQ and the glueing map given by the diagonalized form ofA =
(

4
1

2
1

)
.

Also shown is a cell structure (discussed below) for which this map is combinatorial.

h0 : T → R described above. The metric oñX may be viewed as the pullback metric
of M under this map. In particular, for any compact manifoldW and any piecewise
smooth mapf : W → X̃, we have RVol(f ) = RVol(q ◦ f ).

If L ⊂ T is a line mapping homeomorphically toR under h0, then the subspace
R2 × L ⊂ X̃ is isometric toM . This situation is completely analogous to that of the
solvable Baumslag–Solitar groups, whose standard geometric models contain copies
of the hyperbolic plane (cf Farb and Mosher [13]).

The maph0 : T → R also defines aheight function h: X̃ → R by composing with the
projectionX̃ ∼= R2 × T → T .

Cell structure

The basic cell structure onX is the usual mapping torus cell structure, induced by the
standard cell decomposition for the torus, but we will need to modify the attaching
maps to make it a transverse CW complex.

First, considerQ× [0, 1] combinatorially as a cube and give it the product cell structure
(with eight 0–cells, twelve 1–cells, six 2–cells, and one 3–cell). The side-pairings are
compatible with this structure, so we have a cell structure onT2×[0, 1]. Now subdivide
the top and bottom facesT2×{0, 1} into finitely many cells so thatTA : T2×0→ T2×1
maps open cells homeomorphically to open cells (i.e.TA becomes acombinatorial
map). Note thatT2 × 0 will have d times as many 2–cells asT2 × 1, sinceTA is a
d–fold covering. The pattern of subdivision is obtained by taking intersections of cells
of T2 × 1 with cells ofTA(T2 × 0). SeeFigure 2for the exampleA =

(
4
1

2
1

)
. Since

TA takes cells to cells, we now have a cell structure onX.
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Next we make the cell structure transverse. In this case, the transversality procedure
does not change the homeomorphism type ofX, or even its partition into open cells.
Thus, the piecewise Riemannian metric will still exist, exactly as described, with either
cell structure.

Every mapS0 → X(0) is transverse, so the 1–skeletonX(1) is already a transverse
CW complex. For the 2–skeleton, note that for each attaching mapS1 → X(1) in the
original cell structure, there is a realization ofS1 as a graph such that the map is a graph
morphism. To make this map transverse, expand each vertex into a closed interval (a
1–handle) to form a slightly larger circle. Let the new attaching map first collapse these
intervals back into vertices, and then map toX(1) by the original attaching map. We
have simply introduced some “slack” at the vertices. The 2–skeleton and its partition
into open cells has not changed.

For the attaching mapS2 → X(2) of the 3–cell, note again thatS2 has a cell structure
for which this map is combinatorial (this is a property of our particular complexX).
Expand every 0–cell into a small disk (a 2–handle) and then expand every 1–cell into
a rectangle (a 1–handle), to abtain a new copy ofS2. The new transverse attaching
map will collapse these new handles to 0– and 1–cells and then map toX(2) as before.
SeeFigure 3. Again, the topology ofX is unchanged. (This amounts to a claim that
performing the collapses described above in the boundary of a ball results again in a
ball.)

−→ −→

Figure 3: Transverse 3–cell attachment. The rightmost map is the original attaching map; the
composition is the new (transverse) one.

The universal cover̃X is given the induced cell structure. Note that the closures of the
3–cells are exactly the copies ofQ× [0, 1] tiling X̃ mentioned earlier. Also note that
every 2–cell is eitherhorizontalor vertical: in the productR2×T , it either projects to
a point inT or to a line segment inR2. In the latter case, the projection of the 2–cell
in T is exactly an edge.
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4 The upper bound

We proceed now to establish an upper bound for the strong Dehn function∆(2)(x) of
the groupGA.

Let W be a compact 3–manifold with boundary andf : ∂W → X̃ an admissible map,
which we may make transverse without changing its combinatorial area (by a homotopy
inside X̃(2), of zero volume). Now letg: W → X̃ be a transverse extension off of
smallest Riemannian volume (cfRemark 2.5).

We need to measure the combinatorial volume ofg and bound it in terms of the area
of f . Note that every 0–handle ofW has the same Riemannian volume, equal to the
volume V of the single 3–cell inX. Thus, to count the 0–handles, we will instead
measure the Riemannian volume ofg by integration and divide byV . It turns out
that the geometry of̃X is well-suited to this kind of measurement. We will also work
with the Riemannian area off , but again the relation to combinatorial area causes no
difficulty.

The embedded case

First we discuss a special case in order to clarify the geometric ideas, before incorpo-
rating transverse maps into the argument. We will assume thatW is a subcomplex of
X̃, with g the inclusion map.

SinceW is a manifold, every 2–cell ofW is either in∂W or is adjacent to two 3–cells
of W. Let F ⊂ W (the fold set) be the smallest subcomplex whose 2–cells are the
horizontal 2–cellsσ such thatσ 6⊂ ∂W and both adjacent 3–cells areaboveσ with
respect to the height functionh: X̃ → R. (The fold set may be empty, of course.)

Proposition 4.1 RVol(W) 6 1
ln(λµ) (Area(∂W) + 2 Area(F)).

Proof In M , integrating the volume element (λµ)−z dxdydzalong a vertical ray from
z = 0 to z = ∞ yields 1

ln(λµ) times dxdy, the horizontal area element at the initial
point of the ray. Also, at any point of∂W, the surface area element is greater than or
equal to the horizontal area element.

Consider a flow oñX ∼= R2 × T which is towards the endη in the T factor and the
identity in R2. This flow is semi-conjugate (byq) to a flow in M which is directly
downward. Under this flow, every pointp of W leavesW, either through∂W or
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throughF . Let π−(p) be the first point of∂W or F that p meets under this flow. This
defines a mapπ− : W → (∂W∪F), not necessarily continuous. ThenW decomposes
into two parts,W∂ = π−1

− (∂W) andWF = π−1
− (F).

For anyp ∈ ∂W, the fiberπ−1
− (p) is a segment extending upward fromp, and integrat-

ing along these fibers, we find that RVol(W∂) 6 1
ln(λµ) Area(∂W). For RVol(WF), the

fiber of any point inF consists oftwo segments extending vertically, so RVol(WF) 6
2

ln(λµ) Area(F).

It now suffices to bound Area(F) from above in terms of Area(∂W).

4.2 We need to make some definitions. LetL = logλ(Area(∂W)). We have the
following properties.

λL = Area(∂W)(2)

µL = Area(∂W)logλ(µ)(3)

(λµ)L = Area(∂W)1+logλ(µ)(4)

Equation (2) holds by definition, (4) follows from (2) and (3), and (3) is an instance of
the identityalogb(c) = clogb(a) .

Let v1, . . . , vk ∈ V(T) be the vertices in the image ofW under the projectionπT : X̃ →
T . We define several items associated to these vertices:

• hi = h0(vi), theheightof vi

• Fi = π−1
T (vi) ∩ F , thefold set at vi

• Ti = {x ∈ T | vi ∈ [x, η) }, thesubtree above vi

and the following subsets of∂W:

• Si = ∂W∩ π−1
T (Ti), thesurface above vi

• Ai = Si ∩ h−1((hi , hi + 1)), thelow sliceof Si

• Bi = Si ∩ h−1((hi + L, hi + L + 1)), thehigh sliceof Si .

Note that∂Si has heighthi , soAi lies between heights 0 and 1 above∂Si , andBi lies
between heightsL andL + 1 above∂Si .

Lemma 4.3 Ai ∩ Aj = Bi ∩ Bj = ∅ for i 6= j .

Proof Consider the case ofAi and Aj first. If hi 6= hj then h(Ai) ∩ h(Aj) = ∅ since
vertices have integer heights and the setsh(Ai) have the form (hi , hi + 1). If hi = hj

then vi 6∈ Tj and vj 6∈ Ti , which implies thatTi ∩ Tj = ∅, and henceAi and Aj are
disjoint. The case ofBi andBj is similar.
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Recall that for eachp ∈ F , the fiberπ−1
− (p) is a pair of segments extending upward

from p (it is an open subtree ofp0 × T ⊂ R2 × T , with no branching, sinceW is a
manifold). Define a (non-continuous) mapπ+ : F → ∂W by choosingπ+(p) to be
one of the two upper endpoints of the fiberπ−1

− (p) for eachp ∈ F . Note thatπ+ is
injective (sinceπ− ◦ π+ = idF ), andπ+(Fi) ⊂ Si . The choices of endpoints can be
made so thatπ+ is measurable.

We now express each fold setFi as a union of two parts, thelow andhigh parts, as
follows:

(Fi)low = {p ∈ Fi | h(π+(p)) 6 hi + L + 1}
(Fi)high = {p ∈ Fi | h(π+(p)) > hi + L + 1}.

Also defineFlow =
⋃

i(Fi)low andFhigh =
⋃

i(Fi)high . Clearly,F = Flow ∪ Fhigh .

Proposition 4.4 Area(Flow) 6 (λµ) Area(∂W)2+logλ(µ) .

Proof We compare the areas ofFlow and its image underπ+ , which is a subset
of ∂W. Since π+ projects points ofFlow upward a distance of at mostL + 1,
the horizontal area element atp ∈ Flow is at most (λµ)L+1 times the horizontal
area element atπ+(p). Recall also that this latter area element is no larger than
the surface area element of∂W at π+(p). Since π+ is injective, we now have
Area(Flow) 6 (λµ)L+1 Area(π+(Flow)). The proposition follows, byEquation 4and
the fact that Area(π+(Flow)) 6 Area(∂W).

4.5 We need to introduce some further terminology. Recall that the mapq: X̃ → M
is the identity on theR2 factors ofX̃ andM . Thus theR2 factor of X̃ has coordinates
x, y coming fromM . Let πx, πy : X̃ = R2 × T → R2 be the projection maps onto the
x– andy–axes:πx(x, y, t) = (x, 0) andπy(x, y, t) = (0, y).

Given t ∈ T and a subsetS⊂ R2× t , let x̀(S) be the length ofπx(S)×h0(t) considered
as a subset ofM . This subset is contained in a line parallel to thex–axis, and its length
in M will depend on the height oft . Similarly, let ỳ(S) be the length ofπy(S)× h0(t).
Since the metric onR2 × t is Euclidean, we have

(5) Area(S) 6 x̀(S) ỳ(S).

Now consider two additional projection maps inM : the mapΠx : M → M given by
(x, y, z) 7→ (x, 0, z), and Πy : M → M given by (x, y, z) 7→ (0, y, z). If we consider
the image coordinate planes in their induced metrics, both of these maps are area-
decreasing for surfaces inM .
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We wish to estimate the area of (Fi)high usingEquation 5. For this, we will relate

x̀((Fi)high) and ỳ((Fi)high) to the areas ofAi and Bi . Consider two more families of
sets inM = R2 × R :

Qi = πx((Fi)high)× (hi , hi + 1)

Ri = πy((Fi)high)× (hi + L, hi + L + 1).

These sets are contained in thexz– andyz–coordinate planes respectively, and their
areas may be measured in the induced (hyperbolic) metrics.

Lemma 4.6 For each i we have

(1) x̀((Fi)high) 6 λ Area(Qi)

(2) ỳ((Fi)high) 6 µL Area(Ri).

Proof For (1), the induced metric on thexz–coordinate plane is given byds2 =
λ−2zdx2 + dz2, with area elementλ−zdx dz. Let Di ⊂ R be the projection{x ∈ R |
(x, 0) ∈ πx((Fi)high)}. We have

Area(Qi) =
∫

Di

∫ hi+1

hi

λ−zdz dx >
∫

Di

∫ hi+1

hi

λ−hi−1dz dx

= λ−1
∫

Di

λ−hi dx = λ−1
x̀((Fi)high).

The inequality holds sinceλ > 1, and the last equality holds sinceFi has heighthi .

Part (2) is similar. Theyz–plane has metric given byds2 = µ−2zdy2 + dz2 with area
elementµ−zdy dz. Let Ei ⊂ R be the projection{y ∈ R | (0, y) ∈ πy((Fi)high)}. Then

Area(Ri) =
∫

Ei

∫ hi+L+1

hi+L
µ−zdz dy >

∫
Ei

∫ hi+L+1

hi+L
µ−hi−Ldz dy

= µ−L
∫

Ei

µ−hi dy = µ−L
ỳ((Fi)high).

This time, the inequality holds becauseµ < 1.

Proposition 4.7 Area(Fhigh) 6 λ Area(∂W)2+logλ(µ) .

Proof We will show that

(6) Area((Fi)high) 6 λµL Area(Ai) Area(Bi)

for all i . Then, summing overi and applyingLemma 4.3, we obtain

Area(Fhigh) 6 λµL Area(∂W)2
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which implies the proposition byEquation 3.

To establishEquation 6it suffices to show that Area(Qi) 6 Area(Ai) and Area(Ri) 6
Area(Bi) and to applyEquation 5andLemma 4.6.

First we claim thatΠy(q(Bi)) containsRi . Choose anyp ∈ (Fi)high and h ∈ (hi +
L, hi + L + 1). Write p as (p0, t0) ∈ R2 × T and π+(p) as (p0, t1). The segment
p0 × [t0, t1] is part of the fiberπ−1

− (p), and is contained inW. Sincep is in the high
part of Fi , the height oft1 is at leasthi + L + 1, and there is a uniquet ∈ [t0, t1] of
height h. Now we have (p0, t) ∈ W. The line through (p0, t) parallel to thex–axis
must exitW, at some pointb ∈ Bi . Now Πy(q(b)) = (πy(b), h) = (πy(p), h), and we
have shown thatRi ⊂ Πy(q(Bi)).

By a similar argument,Πx(q(Ai)) containsQi (reverse the roles ofx and y and
chooseh ∈ (hi , hi + 1)). Now recall thatΠx and Πy are area-decreasing andq is
locally isometric. It follows that Area(Bi) > Area(Ri) and Area(Ai) > Area(Qi), as
needed.

Finally, putting together Propositions4.1, 4.4, and4.7, and consolidating constants
(with the assumption that Area(∂W) > 1), we obtain

(7) RVol(W) 6

(
2λ(µ + 1) + 1

ln(λµ)

)
Area(∂W)2+logλ(µ)

which has the form of the desired upper bound for∆(2)(x).

The general case

Now we return to the situation given at the beginning of this section, whereg: W → X̃
is a least-volume transverse extension off : ∂W → X̃(2). The proof will follow the
same general outline as in the embedded case, and we will work with analogues of the
various itemsFi , Ai , Bi , Qi , Ri , etc. The proof itself does not depend formally on the
embedded case, though we will use several of the intermediate results obtained thus
far.

4.8 We need to introduce some terminology related to the generalized handle decom-
position ofW. Recall that a 2–cell of̃X is either horizontal or vertical, accordingly as
it maps to a vertex or an edge of the treeT .

A 1–handle ishorizontal if it maps to a horizontal 2–cell of̃X and is not a floating
1–handle (i.e. it is homeomorphic toI × D2, and not toS1 × D2). A 1–handle is
vertical if it maps to a vertical 2–cell of̃X and is not a floating 1–handle. Thus, every
1–handle is either horizontal, vertical, or is a floating handle.



Density of isoperimetric spectra 23

Remark 4.9 Every non-floating 1–handle either joins a 0–handle to a 0–handle, a
0–handle to∂W, or ∂W to ∂W. In the first case, since the mapg is least-volume,
the two 0–handles map todistinct 3–cells ofX̃. For otherwise, the two neighboring
0–handles can be cancelled by the procedure described inSection 2, reducing the
volume ofg. No 1–handle joins a 0–handle to itself, sinceX̃ has the property that no
2–cell appears more than once as a “face” of any single 3–cell; the closure of a 3–cell
in X̃ is an embedded ball with interior equal to the open 3–cell.

4.10 We will need to make use of some vector fields onW, obtained by pulling back
the coordinate vector fields onM via the mapq◦g: W → M . These vector fields will
be denoted∂

∂x , ∂
∂y , and ∂

∂z , and they are defined on the interiors of the 0–handles. In

particular, every 0–handle has an “upward” direction given by∂
∂z .

We say that a horizontal 1–handleH is minimalif ∂
∂z is directedawayfrom H in both

neighboring 0–handles. Such a 1–handle is a local minimum for the height function
(the z–coordinate) on the treeT .

Since T branches only in the upward direction, and since horizontal 1–handles are
joined to 0–handles mapping to distinct 3–cells inX̃, there are no “maximal” 1–
handlesH (where ∂

∂z is directed towardH on both ends). Hence if a horizontal handle

H = I ×D2 is not minimal, then∂
∂z on the neighboring 0–handles can be extended to

a non-vanishing vector field onH , tangent to theI factor. Thus we will always regard
∂
∂z as being defined (and non-zero) on the union of the 0–handles and the non-minimal
horizontal 1–handles.

Let Fz be the partial foliation onW whose leaves are the orbits of the flow along∂
∂z .

Some leaves ofFz may terminate or originate in a 2– or 3–handle ofW. These are
the leaves whose images iñX meet a 0– or 1–cell. In terms of transverse area, the
set of such leaves has measure zero, and we will discard them fromFz. Note that the
remaining leaves ofFz still meet the 0–handles in a set of full measure. LetUz denote
the union of the leaves ofFz.

Every vertical 2–cell ofX̃ is a face of exactly two 3–cells, and also is not tangent
to the vector fields∂

∂x or ∂
∂y . (The sides ofQ are not parallel to thex– or y–axes

because the matrixA is hyperbolic.) These facts, together withRemark 4.9, imply
that for any vertical 1–handleH = I × D2, the vector field ∂

∂x on the neighboring
0–handles extends to a non-vanishing vector field onH , tangent to theI factor. By
adjusting lengths, we can arrange that this field is independent of thez–coordinate
(this is already true in the 0–handles). The vector field∂

∂y is defined similarly. We
also define partial foliationsFx and Fy on the union of the 0–handles and vertical
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1–handles, analogously toFz. Note that these two foliations coincide in the vertical
1–handles, even though they are transverse elsewhere. Again, we will discard all
leaves terminating or originating in a 2– or 3–handle ofW. Let Ux and Uy denote,
respectively, the unions of the leaves ofFx and ofFy.

4.11 Every leaf ofFz is homeomorphic toR and is oriented by the vector field∂∂z .
It terminates in a well-defined point of∂W, and originates either at a point in∂W or
at a point in the boundary of a minimal 1–handle. Similarly, every leaf ofFx andFy

both originates and terminates on∂W. For p ∈ Uα let τα(p) denote the terminal point
of the leaf ofFα containingp (for α = x, y, z). This defines mapsτα : Uα → ∂W.
Also let oα(p) be the origination point of the leaf ofFα containingp.

Definition 4.12 We wish to define thefold setsin W, which will be embedded surfaces
with boundary (minus a measure zero set). Lete1, . . . , ek be the closed edges ofT
which meet the image ofπT ◦ g. Given ei and a pointpi in the interior ofei , the
preimage (πT ◦ g)−1(pi) is a properly embedded surfaceΣi ⊂ W, by transversality,
and the preimage of the interior ofei is an open regular neighborhood ofΣi . The
intersection ofΣi with the handle decomoposition ofW is a handle decomposition of
Σi , and the map is transverse with respect to this structure. The closure of the preimage
of the interior ofei is a union of handles ofW, and is a codimension-zero submanifold
of W, homeomorphic toΣi × I , with the product handle structure. That is, each 0–,
1–, or 2–handle ofΣi × I is the product of a 0–, 1–, or 2–handle ofΣi with I . The
product structureΣi × I is chosen so that fibersp× I map byq ◦ g into vertical lines
in M (in particular,I corresponds to thez–coordinate in the 0–handles).

Let vi be the lower endpoint ofei (with respect to the height function), and orient the
I factor ofΣi × I so thatΣi × 0 maps tovi . The handles ofW comprisingΣi × I are
all 0–, 1–, and 2–handles. Various 1–, 2–, and 3–handles (those mapping tovi by
πT ◦ g) may be attached in part toΣi × 0. Let Ei be the intersection ofΣi × 0 with
the union of all minimal 1–handles. It is a codimension-zero submanifold ofΣi × 0,
equal to a union of attaching regions of minimal 1–handles. Every minimal 1–handle
is attached to two surfacesEi , Ej for some i 6= j , since the adjacent 0–handles are
distinct and map to distinct edges ofT . Lastly, defineFi to beEi ∩ Uz. Note thatFi

has full measure inEi .

Having definedFi and vi , note that various verticesvi may now coincide (unlike
the embedded case). Define the heightshi exactly as before:hi = h0(vi). Define
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L = logλ(RArea(f )), and note that equations analogous to (2)–(4) hold.

λL = RArea(f )(8)

µL = RArea(f )logλ(µ)(9)

(λµ)L = RArea(f )1+logλ(µ)(10)

We redefine the subtreesTi to be smaller than those fromSection 4.2, by splitting
along the edges above the vertex. That is, we now define

Ti = {x ∈ T | int(ei) ∩ [x, η) 6= ∅}.

This is anopensubtree ofT , not containingvi . DefineSi , Ai , andBi as follows:

• Si = ∂W∩ closure((g ◦ πT)−1(Ti))

• Ai = Si ∩ (g ◦ h)−1((hi , hi + 1))

• Bi = Si ∩ (g ◦ h)−1((hi + L, hi + L + 1)).

Note thatSi is a subsurface of∂W and∂Si = ∂W ∩ (Σi × 0). The next lemma has
essentially the same proof asLemma 4.3.

Lemma 4.13 Ai ∩ Aj = Bi ∩ Bj = ∅ for i 6= j .

Now let F =
⋃

i Fi , and defineπ+ : F → ∂W to be the restrictionτz|F . That is,
π+ flows F “upward” along ∂

∂z to ∂W. Note thatπ+ is indeed defined onF , and is
injective. Define thelow andhighparts ofF as before:

(Fi)low = {p ∈ Fi | h(g(π+(p))) 6 hi + L + 1}
(Fi)high = {p ∈ Fi | h(g(π+(p))) > hi + L + 1}.

Also defineFlow =
⋃

i(Fi)low andFhigh =
⋃

i(Fi)high .

Lemma 4.14 RVol(g) 6 1
ln(λµ) (RArea(f ) + RArea(g|F)).

Proof We have RVol(g) = RVol(g|Uz) sinceUz has full measure in the 0–handles of
W. Note that every leaf ofFz starts onF or on ∂W, and ends in∂W. Thus we may
decomposeUz asUF

z ∪ U∂
z where

UF
z = {p ∈ Uz | oz(p) ∈ F },

U∂
z = {p ∈ Uz | oz(p) ∈ ∂W}.
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Now RVol(g|Uz) = RVol(g|UF
z
) + RVol(g|U∂

z
). By pulling back the metric from̃X and

integrating along leaves ofFz, we have

RVol(g|UF
z
) 6

1
ln(λµ)

RArea(g|F)

and

RVol(g|U∂
z
) 6

1
ln(λµ)

RArea(g|∂W) =
1

ln(λµ)
RArea(f ).

Remark 4.15 In the current situation, there is no ambiguity or choice involved in
the definition ofπ+ . The difference with the embedded case is that each minimal
1–handle hastwoattaching regions contributing toF , and there is a unique way to flow
upward from each side. In effect, the fold set has been doubled, and this also accounts
for the missing factor of 2 inLemma 4.14(compared withProposition 4.1).

Our main task now is to bound RArea(g|F) in terms of RArea(f ). The next result is
entirely analogous toProposition 4.4, and has the same proof. The only difference is
that here the area elements are pulled back fromX̃.

Proposition 4.16 RArea(g|Flow) 6 (λµ) RArea(f )2+logλ(µ) .

Next we need an analogue ofEquation 5. In order to define the lengths̀x and`y for
the sets (Fi)high , we need to extend the vector fields∂∂x and ∂

∂y to the surfacesΣi × 0.
Recall thatΣi × I has a product handle structure, and these vector fields are defined in
the interiors of the 0–handles and 1–handles (all of which are vertical). Note that∂

∂x ,
in the interior ofΣi × I , is zero in theI factor and constant (ast ∈ I is varied) in the
Σi factor. Thus ∂

∂x extends continuously toΣi × 0 as a non-vanishing field, defined
on the interiors of the 0– and 1–handles ofΣi × 0. Any leaf of Fx meetingΣi × 0
remains entirely withinΣi ×0, since ∂

∂x is tangent to this surface (indeed, everyΣi × t
has this property). The vector field∂∂y extends toΣi × 0 in the same way. Lastly, we
discard leaves ofFx andFy meeting 2–handles ofΣi ×0, so that every leaf inΣi ×0
begins and ends in∂Si . These remaining leaves have full measure in the 0–handles of
Σi × 0.

We now define`x((Fi)high) to be the transverse measure of the set of leaves ofFy

meeting (Fi)high . That is, we project (Fi)high ∩ Uy to ∂Si usingτy, and then measure
this set by integrating the pullback of the length elementλ−zdx from M . Similarly,
`y((Fi)high) is defined using the length elementµ−zdy.

Proposition 4.17 RArea(g|(Fi )high) 6 `x((Fi)high) `y((Fi)high) for each i .
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Proof First observe that the intersection of a leaf ofFx and a leaf ofFy is either one
point (in a 0–handle ofΣi×0), a closed interval (in a 1–handle ofΣi×0), or is empty.
To see this, map both leaves toM and project onto thex–axis. EachFy leaf maps to
a single point, whereas eachFx leaf maps monotonically, with point preimages equal
to sets of the form described above.

It follows that the map

τy × τx : (Σi × 0)∩ Ux ∩ Uy → ∂Si × ∂Si

is injective when restricted to the 0–handles ofΣi × 0.

Next define the mapgi : Σi×0→ R2 to beq◦g: Σi×0→ M followed by projection
onto the first two coordinates ofM = R3. Thus, q(g(p)) = (gi(p), hi) ∈ M for all
p ∈ Σi × 0. Let πx, πy : R2 → R be projections onto the first and second coordinates
respectively. It is easily verified thatgi agrees with the following composition of maps:

(Σi × 0)∩ Ux ∩ Uy
τy×τx−−−→ ∂Si × ∂Si

gi×gi−−−→ R2 × R2 πx×πy−−−−→ R× R.

(Write q(g(p)) as (xp, yp, hi); both maps sendp to (xp, yp).)

Recall thatΣi × 0 maps intoR2 × hi ⊂ M , and so the surface area element being
pulled back in the computation of RArea(g|(Fi )high) is the horizontal area element ofM .
This element is just the product of the length elementsλ−zdx andµ−zdy.

In the integrals below, (Fi)high is understood to be restricted to the 0–handles ofΣi ×0
(where area is supported). We have

RArea(g|(Fi )high) =
∫

(Fi )high

(q ◦ g)∗(λ−zdxµ−zdy)

=
∫

(Fi )high∩Ux∩Uy

(πx × πy ◦ gi × gi ◦ τy × τx)
∗(λ−zdxµ−zdy)

which, by injectivity ofτy × τx, is at most∫
τy((Fi )high∩Ux∩Uy)×τx((Fi )high∩Ux∩Uy)

(πx × πy ◦ gi × gi)
∗(λ−zdxµ−zdy).

The latter is equal to∫
τy((Fi )high∩Ux∩Uy)

(πx ◦ gi)
∗(λ−zdx)

∫
τx((Fi )high∩Ux∩Uy)

(πy ◦ gi)
∗(µ−zdy),

which is just`x((Fi)high) `y((Fi)high).
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In Section 4.5we defined the projection mapsΠx,Πy : M → M , sending (x, y, z) to
the points (x, 0, z) and (0, y, z) respectively. We also had projectionsπx, πy : X̃ =
R2 × T → R2, mapping (x, y, t) to (x, 0) and (0, y) respectively. Define the setsQi ,
Ri ⊂ M = R2 × R as follows:

Qi = πx(g((Fi)high))× (hi , hi + 1)

Ri = πy(g((Fi)high))× (hi + L, hi + L + 1).

The claims ofLemma 4.6remain true exactly as stated, and are proved in the same
way. Thus:

Lemma 4.18 For each i we have

(1) x̀((Fi)high) 6 λ Area(Qi)

(2) ỳ((Fi)high) 6 µL Area(Ri).

Next we adaptProposition 4.7to the current situation.

Proposition 4.19 RArea(g|Fhigh) 6 λ RArea(f )2+logλ(µ) .

Proof As in the proof ofProposition 4.7, it suffices to show that Area(Qi) 6
RArea(f |Ai ) and Area(Ri) 6 RArea(f |Bi ) for eachi : since

RArea(g|(Fi )high) 6 λµL Area(Ai) Area(Bi)

by Proposition 4.17andLemma 4.18, we then have

RArea(g|(Fi )high) 6 λµL RArea(f |Ai ) RArea(f |Bi )

for all i . Summing overi , usingLemma 4.13, we obtain the desired inequality, by
Equation 9.

We claim thatΠy(q(f (Bi))) contains a subset ofRi of full measure. Given a point in
Ri , it is determined by pointsp ∈ (Fi)high andh ∈ (hi + L, hi + L + 1). Let p′ ∈ W be
a point on the leaf ofFz throughp of heighth; such a point exists sincep has height
hi and π+(p) has heighthi + L + 1 or greater. Writeq(g(p′)) as (xp′ , yp′ , h) in the
coordinates ofM , and note thatq(g(p)) = (xp′ , yp′ , hi). Thusπy(g(p)) = (0, yp′).

If p′ ∈ Ux thenτx(p′) is defined and is inBi , and

Πy(q(f (τx(p
′)))) = (0, yp′ , h) = (πy(g(p)), h).

Therefore this point ofRi is indeed in the image ofBi underΠy ◦ q◦ f . Thus we want
to verify thatp′ ∈ Ux for almost all choices of (πy(g(p)), h) ∈ Ri .
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Let R′i be the set of pairs (πy(g(p)), h) ∈ Ri such thath is not an integer. LetK ⊂ X̃
be the intersection ofg(W) with the 1–skeleton of̃X. It is a finite graph, and its image
Πy(q(K)) has measure zero in theyz–plane inM . Note also that all 2– and 3–handles
of W map byg into K .

The pointp′ must be in the interior of a 0–handle or a horizontal 1–handle ofW, since
p′ ∈ Uz. In the latter case,p′ maps to a horizontal 2–cell of̃X, and soh is an integer.
In the former case,∂∂x is defined atp′ . If p′ 6∈ Ux then the (discarded) leaf ofFx

throughp′ meets a 2– or 3–handle. ThenΠy(q(g(p′))) is contained in the measure zero
setΠy(q(K)). But Πy(q(g(p′))) is the original point (πy(g(p)), h) ∈ Ri . The argument
above therefore shows thatΠy(q(f (Bi))) containsR′i −Πy(q(K)), a subset ofRi of full
measure.

Thus AreaΠy(q(f (Bi))) > Area(Ri). SinceΠy is area-decreasing andq locally isomet-
ric, we conclude that RArea(f |Bi ) > Area(Ri). By a similar argument, RArea(f |Ai ) >
Area(Qi).

The bound

We can now determine an upper bound for∆(2)(x). AssemblingLemma 4.14and
Propositions4.16, 4.19and consolidating constants, we find that

(11) RVol(g) 6

(
1 + λ(µ + 1)

ln(λµ)

)
RArea(f )2+logλ(µ).

Recall that all 3–cells of̃X have the same volumeV (and hence Vol3(g) = 1
V RVol(g)).

Let C be the largest Riemannian area of a 2–cell ofX̃ (or equivalently, ofX). Then
RArea(f ) 6 CVol2(f ), and byEquation 11we have

Vol3(g) 6

(
1 + λ(µ + 1)

V ln(λµ)

)
(CVol2(f ))2+logλ(µ).

Therefore FVolW(f ) 6 D(Vol2(f ))2+logλ(µ) for a constantD depending only on the
original matrix A (which determinedλ, µ, and the geometry of̃X). Since the 3–
manifold W was arbitrary, we have now established that∆(2)(x) 6 Dx2+logλ(µ) , and
thereforeδ(2)(x) 4 ∆(2)(x) 4 x2+logλ(µ) .

5 The lower bound

To establish a lower bound forδ(2)(x) we want a sequence of embedded ballsBn ⊂ X̃
whose volume growth is as large as possible, relative to the growth of boundary area.
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The optimal shape is a ball made from two half-balls, each contained in a copy ofM
inside X̃, joined along their bottom faces. The half-balls inM will need to have large
volume compared to “upper” boundary area.

For the half-balls, we begin by defining optimally proportioned regionsRn ⊂ M , which
are easy to measure in the Riemannian metric. Then we approximate these regions
combinatorially by subcomplexesSn.

Extremal Riemannian regions

In the coordinates ofM , define

Rn = [0, λn] × [0, (λµ)n] × [0, n].

The volume ofRn is easily computed by integration. Each horizontal slice [0, λn] ×
[0, (λµ)n] × z has areaλn(λµ)n(λµ)−z, and integrating in thez–coordinate yields

(12) RVol(Rn) =
1

ln(λµ)
(λn(λµ)n − λn).

Recall thatλµ = det(A) > 2. If n > 1 then1
2(λµ)n > 1, whence (λµ)n−1 > 1

2(λµ)n.
Together withEquation 12this implies

RVol(Rn) >
1

2 ln(λµ)
λn(λµ)n

=
1

2 ln(λµ)

(
λn)2+logλ(µ)(13)

for n > 1.

Next we consider the areas of the various faces ofRn. The top face has areaλn (taking
z = n, above). Next, the segment [0, λn] × y× z has lengthλnλ−z. Integrating with
respect toz, we find that the faces [0, λn]×0× [0, n] and [0, λn]× (λµ)n× [0, n] each
have area 1

ln(λ) (λ
n − 1). By a similar computation, the other two vertical faces each

have area 1
ln(µ)λ

n(µn − 1) = 1
ln(µ−1)λ

n(1− µn). Sinceµ < 1, this quantity is less than
1

ln(µ−1)λ
n. Now let ∂+Rn denote the union of the five faces (omitting the bottom face)

of Rn. We have shown that

(14) RArea(∂+Rn) 6
(
1 + (2/ ln λ)− (2/ ln µ)

)
λn.
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Extremal combinatorial regions

Recall thatD is the matrixBAB−1 =
(

λ
0

0
µ

)
, andΓ is the latticeB(Z× Z), preserved

by D. Fix any standard copy ofM inside X̃, corresponding to a lineL ⊂ T . ThenM
is a subcomplex of̃X, and we need to understand its cell structure. Note thatM is a
union of subcomplexesR2× [i−1, i] for i ∈ Z. Consider the subcomplexR2× [0, 1].
Possibly after a horizontal translation, the closed 3–cells are the setsγ(Q)× [0, 1], for
γ in Γ (recall thatQ is a fundamental domain forΓ acting onR2). Figure 2shows
the top and bottom faces of one of these 3–cells, in the case of no translation.

To be more specific, letΓ′ be the latticeD−1(Γ), and note thatΓ′ containsΓ as a
subgroup of indexd. Then the 3–cells ofR2× [0, 1] are the setsγ(Q)× [0, 1] where
γ ranges over a single coset ofΓ in Γ′ .

Continuing upward, the closed 3–cells ofR2× [i−1, i] are the setsγ(Di−1(Q))× [i−
1, i], whereγ ranges over a coset ofDi−1(Γ) in Γ′ . The choice of coset depends on
the path inT followed by L from height 0 to heighti . (There aredi such paths, and
cosets.) Thus, the various copies ofM inside X̃ have differing cell structures (with
respect to the standard coordinates), though at each height they agree up to horizontal
translation.

For i = 1, 2, . . . let Λi ⊂ R2 be the union of the sides ofγ(Di−1(Q)) for γ in the
appropriate coset ofDi−1(Γ) in Γ′ . ThenΛi × i is a subcomplex ofM , and in fact,
so isΛi × [i − 1, i]. This latter subcomplex is the smallest subcomplex containing the
vertical 1– and 2–cells ofR2 × [i − 1, i].

Definition 5.1 Let w be the diameter ofQ (in R2, with the Euclidean metric). There
is a constantk such that every horizontal or vertical line segment of lengthw intersects
Λ1 in at mostk points. We will callk thebacktracking constantfor X̃.

Lemma 5.2 Let W ⊂ R2 be a region of the form [a, a + w] × R or R× [a, a + w] .
Let π : W → R be projection onto the R factor. Then W ∩ Λ1 contains a properly
embedded line `, and the restricted map π : ` → R is at most k-to-one.

Proof The components ofR2 − Λ1 are isometric copies of the interior ofQ. For the
first statement, note that an open set of diameterw cannot disconnectW, and soW∩Λ1

is connected and contains a line joining the two ends ofW. The second statement is
clear, since the fibers ofπ are horizontal or vertical segments of lengthw.
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Applying the mapDi−1 (and possibly a translation) toLemma 5.2yields the following
result. Note thatD preserves the horizontal and vertical foliations ofR2 by lines. In
particular,Di−1 takes fibers ofπ to fibers.

Lemma 5.3 Let W ⊂ R2 be a region of the form [a, a + λi−1w] × R or R× [a, a +
µi−1w] . Let π : W → R be projection onto the R factor. Then W ∩ Λi contains a
properly embedded line `, and the restricted map π : ` → R is at most k-to-one.

Now we can proceed to define subcomplexes approximating the regionsRn. Given an
integern, we will define “slabs”Si,n ⊂ R2 × [i − 1, i] for i between 1 andn. The
union

⋃
i Si,n will contain Rn, and will have comparable volume and surface area (the

latter of which is controlled by the backtracking constantk). The slabs will not fit
together perfectly: there will be under- and over-hanging portions, but the additional
surface area arising in this way is not excessive.

Fix n ∈ Z+ . For i between 1 andn, consider the four strips

W1
i = R× [−µi−1w, 0]

W2
i = [λn, λn + λi−1w] × R

W3
i = R× [(λµ)n, (λµ)n + µi−1w]

W4
i = [−λi−1w, 0]× R

which surround the rectangle [0, λn] × [0, (λµ)n]. By Lemma 5.3, each of these strips
contains a properly embedded line inΛi , projecting to thex– or y–axis in ak-to-one
fashion, at most. Choose segments`j

i ⊂ Wj
i in these lines which meet each other only in

their endpoints, forming an embedded quadrilateral inΛi enclosing [0, λn]×[0, (λµ)n].
Let Di be the closed region bounded by this quadrilateral, and define theslab Si,n to
be the subcomplexDi × [i − 1, i] ⊂ M . Let Sn =

⋃n
i=1 Si,n.

Let Wi,n be the rectangle delimited by the outermost sides of the stripsW1
i , W2

i ,
W3

i , W4
i and note thatWi,n containsDi . The maximum width of these rectangles is

λn+2λn−1w = λn(1+2w/λ), and the maximum height is (λµ)n+2w 6 (λµ)n(1+2w).
Let κ be the larger of logλ(1 + 2w/λ) and logλµ(1 + 2w). Then the rectangle with
lower-left corner at (−λn−1w,−w), of width λn+κ and height (λµ)n+κ , containsWi,n

for all i . Let R′n+κ be Rn+κ , translated by−λn−1w in the x–direction and by−w in
the y–direction. Then we have

Rn ⊂ Sn ⊂ R′n+κ.

Let ∂+Sn denote the largest subcomplex of the boundary ofSn which does not meet the
interior of the base ofRn (that is, (0, λn)× (0, (λµ)n)× 0). Note that∂+Sn has three
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parts: thetop, Dn; thevertical part, made of the sets̀j
i × [i − 1, i]; and thehorizontal

part, contained in the union of the annuli
(
Wi,n × i

)
−

(
(0, λn) × (0, (λµ)n) × i

)
, for

i = 0, . . . , n − 1. This last part contains the horizontal 2–cells of heighti in the
symmetric difference (Di × i)4 (Di−1 × i), where the slabs fail to join perfectly.

Lemma 5.4 There is a constant C such that the Riemannian area of the top and
vertical parts of ∂+Sn is at most CRArea(∂+R′n+κ).

Proof TranslatingDn upward byκ, it becomes a subset of the top face ofR′n+κ .
Therefore its area is at most (λµ)κ times the area of the top face ofR′n+κ . Next
consider the coordinate projections of`j

i × [i − 1, i] onto the sides ofR′n+κ . These
maps are at mostk-to-one, by the construction of`j

i . Moreover, the Jacobians of these
maps are bounded below by someJ > 0, independent ofn. To see this, consider
for example the coordinate projection onto thexz–plane (the case of oddj ). On each
closed vertical 2–cell the Jacobian achieves a positive minimum, and there are finitely
many such cells modulo isometries ofM . These isometries preserve thexz–plane
field, and hence also the Jacobian of this projection. The case of theyz–projection
is similar. Now the Riemannian area of

⋃n
i=1 `j

i × [i − 1, i] is at mostk/J times the
area of one of the four sides ofR′n+κ (one side for eachj ). The result follows with
C = max{(λµ)κ, k/J}.

Lemma 5.5 There is a constant D such that the Riemannian area of the horizontal
part of ∂+Sn is at most Dλn .

Proof Let Ai,n be the annular region
(
Wi,n × i

)
−

(
(0, λn)× (0, (λµ)n)× i

)
. Then

RArea(Ai,n) = (λn−i + 2w/λ)(λnµn−i + 2w/µ)− λn−iλnµn−i

= 2wλn−1µn−i + 2wλn−iµ−1 + 4w2(λµ)−1

6 2w(λn−1 + λn−iµ−1) + 4w2.

Hence the area of the horizontal part is at most

n−1∑
i=0

RArea(Ai,n) 6 2w
(
λn−1 + λ(λn − 1)/µ(λ− 1)

)
+ 4w2n

6 2w
(
λ−1 + λ/µ(λ− 1)

)
λn + 4w2n.

Lastly, 4w2n is less than4w2

ln λλn, thus establishing the result.
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The bound

Recall thatX̃ contains isometric copies ofM , corresponding to lines inT . Choose
two such linesL0, L1 which coincide at negative heights and diverge at height 0. Let
M0, M1 be the corresponding copies ofM in X̃. Let Si

n be the subcomplexSn of Mi

constructed earlier (recall that the contruction depended on the cell structure ofMi ,
which varies withi ). Let Bn ⊂ X̃ be the subcomplexS0

n ∪ S1
n . It contains the two

copies ofRn in M0 andM1 (which meet along their bottom faces), and its boundary is
contained in∂+S0

n ∪ ∂+S1
n .

Let a be the minimum Riemannian area of a 2–cell ofX̃. CombiningEquation 14
with Lemmas5.4and5.5, we have

(15) Vol2(∂Bn) 6 (2/a)
(

Cλκ
(
1 + (2/ ln λ)− (2/ ln µ)

)
+ D

)
λn.

By Equation 13we have

Vol3(Bn) >
1

V ln(λµ)

(
λn)2+logλ(µ)

.

Thus there is a constantE such that Vol3(Bn) > E(Vol2(∂Bn))2+logλ(µ) for all n.
By Remark 2.9, sinceSn is embedded iñX, we haveδ(2)(xn) > E(xn)2+logλ(µ) for
xn = Vol2(∂Bn). Lastly, it remains to show that the sequence (xn) is not too sparse.
Recall that the topDn of ∂+Sn contains the top face ofRn, and the latter has areaλn.
Thus Vol2(∂Bn) > Kλn for some constantK . Together withEquation 15this implies
that the ratiosxn/xn−1 are bounded. According to Remark 2.1 of [5], this property
suffices to conclude thatδ(2)(x) < x2+logλ(µ) .

6 Proof of Theorem 1.2

Sections4 and5 established the proof ofTheorem 1.1. Next we consider the groups
GΣiA

∼= GA×Zi and their (i+2)–dimensional Dehn functions. The following definition
is taken from [5].

Definition 6.1 Let G be a group of typeFk+1 and geometric dimension at mostk+1.
The k–dimensional Dehn functionδ(k)

G (x) has embedded representativesif there is a
finite aspherical (k + 1)–complexX, a sequence of embedded (k + 1)–dimensional
balls Bi ⊂ X̃, and a functionF(x) ' δ(k)

G (x), such that the sequence given by (ni) =
(Volk(∂Bi)) tends to infinity and is exponentially bounded, and Volk+1(Bi) > F(ni) for
eachi .
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The Dehn functionsδ(2)(x) for the groupsGA have embedded representatives, as
constructed inSection 5. We also have the following result from [5].

Proposition 6.2 Let G be a group of type Fk+1 and geometric dimension at most
k + 1. Suppose the k–dimensional Dehn function δ(k)(x) of G is equivalent to xs and
has embedded representatives. Then G× Z has (k + 1)–dimensional Dehn function
δ(k+1)(x) < x2−1/s, with embedded representatives.

The proof ofTheorem 1.2now proceeds exactly as in Theorem D of [5]. Let α =
2+ logλ(µ) ands(i) = (i+1)α−i

iα−(i−1) . We verify by induction oni the following statements
for GΣiA.

(1) ∆(i+2)(x) 6 Cxs(i) for some constantC > 0

(2) δ(i+2)(x) < xs(i)

(3) δ(i+2)(x) has embedded representatives

The first two statements together yield the desired conclusionδ(i+2)(x) ' xs(i) .

If i = 0 then (1) and (2) are the respective conclusions of Sections4and5, and (3) holds
as remarked above. Fori > 0 note first thats(i) = 2− 1/s(i − 1). Then statement (1)
holds byTheorem 2.7and property (1) ofGΣi−1A. Proposition 6.2implies (2) and (3)
by properties (1)–(3) ofGΣi−1A.

7 Density of exponents

In this section,A is a 2×2 matrix with integer entries. Denote the trace and determinant
of A by t andd respectively. Note that the characteristic polynomial ofA is given by
p(x) = x2 − tx + d, and the eigenvalues areλ = t+

√
t2−4d
2 andµ = t−

√
t2−4d
2 . The

next lemma shows that under certain conditions, the leading eigenvalue can be roughly
approximated by the trace.

Lemma 7.1 If t > 4 and t > d > 0 then λ, µ ∈ R and t − 4 6 λ 6 t .

Proof First, t > 4 and t > d imply that t2 > 4d, and thereforeλ, µ ∈ R. Next, λ

is the average oft and
√

t2 − 4d, and so
√

t2 − 4d 6 λ 6 t . It remains to show that
t − 4 6

√
t2 − 4d. Note that

√
t2 − 4t is the geometric mean oft − 4 andt , and so it

lies betweent− 4 andt . Sincet > d, we now havet− 4 6
√

t2 − 4t 6
√

t2 − 4d, as
needed.
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Lemma 7.2 The function f (x, y) = logx(y) maps the set

S = { (t, d) ∈ N× N | 2 6 d 6 t − 4}

onto a dense subset of (0, 1).

Proof Givenε > 0, fix an integert > e2/ε . We will show that the points (t, 2), (t, 3),
. . . , (t, t − 4) map to anε–dense subset of (0, 1).

Fixing x = t , the functionf (t, · ) maps [1, t] homeomorphically onto [0, 1], and maps
[2, t] onto an interval containing [ε, 1], by the choice oft . Sincefy = 1

y ln(x) , we have

|fy(t, y)| 6 1
2 ln(t) < ε/4 for all y > 2, again by the choice oft . Therefore

|f (t, d)− f (t, d + 1)| < ε/4

for all integersd > 2. Thus the image of the set{(t, 2), (t, 3), . . . , (t, t)} is ε/4–dense
in (and includes the endpoints of) an interval containing [ε, 1]. Omitting the last four
points, the remaining set isε–dense in (0, 1).

Now we can prove the main result of this section.

Proposition 7.3 (Density) Given α ∈ (1, 2) and ε > 0, there is a matrix A ∈
M2(Z) with determinant d > 2 and eigenvalues λ, µ with λ > 1 > µ such that∣∣(2 + logλ(µ)

)
− α

∣∣ < ε.

Proof Given integerst andd, the matrix

A(t, d) =
(

t −d
1 0

)
∈ M2(Z)

has tracet and determinantd (and eigenvaluesλ, µ). Note also thatλµ = d implies
that 2+ logλ(µ) = 1 + logλ(d). Thus we need to chooset and d so that logλ(d) is
within ε of α− 1.

First, choose a numberT such that

(16)
4

(t − 4) ln(t − 4)
6 ε/2

for all t > T .

Next, applyLemma 7.2to obtain t and d such that|logt(d)− (α− 1)| < ε/2 and
2 6 d 6 t− 4. We may assume in addition thatt > T , since only finitely many points
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of S violate this condition, and omitting these fromS does not affect the conclusion of
the lemma. ByLemma 7.1we have

(17) 2 6 d 6 t − 4 6 λ 6 t.

Note thatf (x, y) = logx(y) has partial derivativefx = − ln(y)
x ln(x) ln(x) . Along the segment

{(x, y) | t − 4 6 x 6 t, y = d} we have

|fx| 6
ln(d)

(t − 4) ln(t − 4) ln(t − 4)
6

1
(t − 4) ln(t − 4)

.

This implies (withEquation 16) that∣∣logt−4(d)− logt(d)
∣∣ 6

4
(t − 4) ln(t − 4)

6 ε/2.

Now, sinceλ is betweent − 4 andt , we have

|logλ(d)− logt(d)| 6 ε/2,

and hence logλ(d) is within ε of α− 1.

Lastly, the inequalityµ < 1 reduces tod < t − 1, which holds byEquation 17. The
inequalityλ > 1 is clear sincet > 2.
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