Topology I

Sample Questions

- 1. Give the definition of a *total order* on a set. Define the *order topology* on a totally ordered set. Define what it means for a topological space to be *Hausdorff*.
 - (a) Prove that order topology is Hausdorff.
 - (b) Prove that a space Z is Hausdorff iff the diagonal $\Delta_Z \subset Z \times Z$ is closed where $Z \times Z$ has the product topology.
 - (c) Suppose that $f, g: X \to Y$ are continuous functions from a top space X to a totally ordered set Y with the order topology. Prove that $\{x \in X \mid f(x) \ge g(x)\}$ is closed in X.
- 2. State the Axiom of choice. Let $X_{\alpha} | \alpha \in J$ be an indexed collection of sets.
 - (a) Define the product $\prod_{\alpha \in J} X_{\alpha}$.
 - (b) Prove that the fact that the product of a nonempty collection of nonempty sets is nonempty is equivalent to the axiom of choice.
 - (c) Define the product topology on $\prod_{\alpha \in J} X_{\alpha}$.
 - (d) Prove that the projection maps $P_{\alpha} : \prod_{\alpha \in J} X_{\alpha} \to X_{\alpha}$ are continuous.
 - (e) Prove that a function $f: Z \to \prod_{\alpha \in J} X_{\alpha}$ is continuous iff $P_{\alpha} \circ f$ are continuous.
- 3. Define quotient topology and quotient map.

Throughout this question we will call \mathbb{R}/\mathbb{Z} the *circle* and $\mathbb{R}^2/\mathbb{Z}^2$ the *torus*.

- (a) Let $q: X \to Y$ be a quotient map, and let $f: X \to Z$ be a surjective function with the property that $f(x_1) = f(x_2)$ iff $q(x_1) = q(x_2)$. Prove that f induces a well defined bijection $\overline{f}: Y \to Z$ by $\overline{f}(q(x)) = f(x)$, and prove that \overline{f} is continuous iff f is continuous.
- (b) Let $A \in SL(2,\mathbb{Z})$. Prove that A induces a homeomorphism $\mathbb{R}^2/\mathbb{Z}^2 \to \mathbb{R}^2/\mathbb{Z}^2$.
- (c) Check that the map $\mathbb{R} \to \mathbb{R}^2 : x \mapsto (x, 0)$ induces a continuous map from the circle \mathbb{R}/\mathbb{Z} to the torus $\mathbb{R}^2/\mathbb{Z}^2$. The image is called the (1, 0)-curve on the torus.
- (d) Suppose that $p, q \in \mathbb{Z}$. Check that the map $\mathbb{R} \to \mathbb{R}^2 : x \mapsto (px, qx)$ induces a continuous map from the circle \mathbb{R}/\mathbb{Z} to the torus $\mathbb{R}^2/\mathbb{Z}^2$. The image is called the (p,q)-curve on the torus.
- (e) Say that a subspace $A \subset X$ is a *retract* of X if there exists a continuous map $r: X \to A$ so that $r \circ i = \mathbb{I}_A$, where $i: A \to X: a \mapsto a$ is the inclusion map. Prove that the (1, 0)-curve is a retract of the torus $\mathbb{R}^2/\mathbb{Z}^2$.
- (f) Suppose $p, q \in \mathbb{Z}$ satisfy gcd(p,q) = 1. Is the (p,q)-curve a retract of the torus $\mathbb{R}^2/\mathbb{Z}^2$? Give reasons for your answer.
- 4. Define the *Mobius band*, M, to be the following quotient space of $[0, 10] \times [-1, 1]$.

$$M = [0, 10] \times [-1, 1] / \sim$$

where \sim is defined by $(0, y) \sim (10, -y)$ for all $y \in [-1, 1]$.

- (a) Prove that $[0, 10] \times \{0\}/\sim$ is homeomorphic to the circle \mathbb{R}/\mathbb{Z} . So we can safely refer to $[0, 10] \times \{0\}/\sim$ as a *circle*.
- (b) Prove that the circle $[0,10] \times \{0\}/\sim$ is a retract of M. That is, construct a retract map $r: M \to [0,10] \times \{0\}/\sim$.

- 5. Define closure A, interior A° for a subset A of a topological space X.
 Define the boundary (frontier), ∂A, of A as follows ∂A = A A°.
 Let X and Y be topological spaces, A ⊂ X, B ⊂ Y, and give X × Y the product topology.
 - (a) Prove that $\overline{A \times B} = \overline{A} \times \overline{B}$.
 - (b) Prove that $(A \times B)^{\circ} = A^{\circ} \times B^{\circ}$.
 - (c) Prove that $\partial(A \times B) = (\partial A \times B) \cup (A \times \partial B)$. Draw a picture in the case A = B = [0, 1] and $X = Y = \mathbb{R}$.
- 6. Let S_{Ω} denote a well-ordered set whose order type is the first uncountable ordinal. Give an argument to show that such a well-ordered set exists.

Give $S_{\Omega} \cup \{\Omega\}$ the ordering in which every element of S_{Ω} is less than Ω , and consider the corresponding order topology.

- (a) Prove that Ω is a limit point of S_{Ω} .
- (b) Prove that every countable subset $A \subset S_{\Omega}$ has an upper bound in S_{Ω} .
- (c) Prove that no sequence in S_{Ω} converges to Ω .
- (d) Is $S_{\Omega} \cup \{\Omega\}$ with the order topology metrizable?
- 7. Is the projection $p_1 : \mathbb{R}^2 \to \mathbb{R} : (x, y) \mapsto x$ an open map? Is it a closed map?
- 8. Let $X = \{(x, y) \in \mathbb{R}^2 \mid y = 0 \text{ or } x \ge 0\}$. Is $p_1|_X$ an open map? Is it a closed map?