1. Give the definition of a total order on a set. Define the order topology on a totally ordered set. Define what it means for a topological space to be Hausdorff.
(a) Prove that order topology is Hausdorff.
(b) Prove that a space Z is Hausdorff iff the diagonal $\Delta_{Z} \subset Z \times Z$ is closed where $Z \times Z$ has the product topology.
(c) Suppose that $f, g: X \rightarrow Y$ are continuous functions from a top space X to a totally ordered set Y with the order topology. Prove that $\{x \in X \mid f(x) \geq g(x)\}$ is closed in X.
2. State the Axiom of choice. Let $X_{\alpha} \mid \alpha \in J$ be an indexed collection of sets.
(a) Define the product $\prod_{\alpha \in J} X_{\alpha}$.
(b) Prove that the fact that the product of a nonempty collection of nonempty sets is nonempty is equivalent to the axiom of choice.
(c) Define the product topology on $\prod_{\alpha \in J} X_{\alpha}$.
(d) Prove that the projection maps $P_{\alpha}: \prod_{\alpha \in J} X_{\alpha} \rightarrow X_{\alpha}$ are continuous.
(e) Prove that a function $f: Z \rightarrow \prod_{\alpha \in J} X_{\alpha}$ is continuous iff $P_{\alpha} \circ f$ are continuous.
3. Define quotient topology and quotient map.

Throughout this question we will call \mathbb{R} / \mathbb{Z} the circle and $\mathbb{R}^{2} / \mathbb{Z}^{2}$ the torus.
(a) Let $q: X \rightarrow Y$ be a quotient map, and let $f: X \rightarrow Z$ be a surjective function with the property that $\underline{f}\left(x_{1}\right)=f\left(x_{2}\right)$ iff $q\left(x_{1}\right)=q\left(x_{2}\right)$. Prove that f induces a well defined bijection $\bar{f}: Y \rightarrow Z$ by $\bar{f}(q(x))=f(x)$, and prove that \bar{f} is continuous iff f is continuous.
(b) Let $A \in S L(2, \mathbb{Z})$. Prove that A induces a homeomorphism $\mathbb{R}^{2} / \mathbb{Z}^{2} \rightarrow \mathbb{R}^{2} / \mathbb{Z}^{2}$.
(c) Check that the map $\mathbb{R} \rightarrow \mathbb{R}^{2}: x \mapsto(x, 0)$ induces a continuous map from the circle \mathbb{R} / \mathbb{Z} to the torus $\mathbb{R}^{2} / \mathbb{Z}^{2}$. The image is called the $(1,0)$-curve on the torus.
(d) Suppose that $p, q \in \mathbb{Z}$. Check that the map $\mathbb{R} \rightarrow \mathbb{R}^{2}: x \mapsto(p x, q x)$ induces a continuous map from the circle \mathbb{R} / \mathbb{Z} to the torus $\mathbb{R}^{2} / \mathbb{Z}^{2}$. The image is called the (p, q)-curve on the torus.
(e) Say that a subspace $A \subset X$ is a retract of X if there exists a continuous map $r: X \rightarrow A$ so that $r \circ i=\mathbb{I}_{A}$, where $i: A \rightarrow X: a \mapsto a$ is the inclusion map. Prove that the $(1,0)$-curve is a retract of the torus $\mathbb{R}^{2} / \mathbb{Z}^{2}$.
(f) Suppose $p, q \in \mathbb{Z}$ satisfy $\operatorname{gcd}(p, q)=1$. Is the (p, q)-curve a retract of the torus \mathbb{R}^{2} / Z^{2} ? Give reasons for your answer.
4. Define the Mobius band, M, to be the following quotient space of $[0,10] \times[-1,1]$.

$$
M=[0,10] \times[-1,1] / \sim
$$

where \sim is defined by $(0, y) \sim(10,-y)$ for all $y \in[-1,1]$.
(a) Prove that $[0,10] \times\{0\} / \sim$ is homeomorphic to the circle \mathbb{R} / \mathbb{Z}. So we can safely refer to $[0,10] \times\{0\} / \sim$ as a circle.
(b) Prove that the circle $[0,10] \times\{0\} / \sim$ is a retract of M. That is, construct a retract map $r: M \rightarrow[0,10] \times\{0\} / \sim$.
5. Define closure \bar{A}, interior A° for a subset A of a topological space X.

Define the boundary (frontier), ∂A, of A as follows $\partial A=\bar{A}-A^{\circ}$.
Let X and Y be topological spaces, $A \subset X, B \subset Y$, and give $X \times Y$ the product topology.
(a) Prove that $\overline{A \times B}=\bar{A} \times \bar{B}$.
(b) Prove that $(A \times B)^{\circ}=A^{\circ} \times B^{\circ}$.
(c) Prove that $\partial(A \times B)=(\partial A \times B) \cup(A \times \partial B)$. Draw a picture in the case $A=B=[0,1]$ and $X=Y=\mathbb{R}$.
6. Let S_{Ω} denote a well-ordered set whose order type is the first uncountable ordinal. Give an argument to show that such a well-ordered set exists.

Give $S_{\Omega} \cup\{\Omega\}$ the ordering in which every element of S_{Ω} is less than Ω, and consider the corresponding order topology.
(a) Prove that Ω is a limit point of S_{Ω}.
(b) Prove that every countable subset $A \subset S_{\Omega}$ has an upper bound in S_{Ω}.
(c) Prove that no sequence in S_{Ω} converges to Ω.
(d) Is $S_{\Omega} \cup\{\Omega\}$ with the order topology metrizable?
7. Is the projection $p_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}:(x, y) \mapsto x$ an open map? Is it a closed map?
8. Let $X=\left\{(x, y) \in \mathbb{R}^{2} \mid y=0\right.$ or $\left.x \geq 0\right\}$. Is $\left.p_{1}\right|_{X}$ an open map? Is it a closed map?

