| Fa'09: MATH 2513-001 | Discrete Mathematics  Midterm II |             | Noel Brady 9:00am-10:15am |
|----------------------|----------------------------------|-------------|---------------------------|
| Tuesday 10/27/2009   |                                  |             |                           |
| Name:                |                                  | Student ID: |                           |

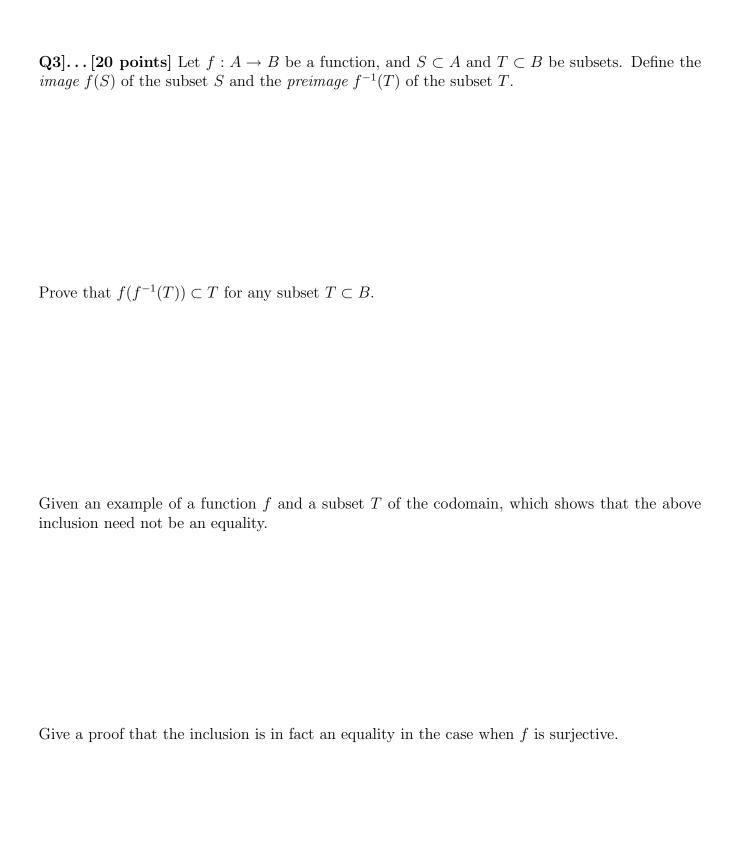
## Instructions.

- 1. Attempt all questions.
- 2. Do not write on back of exam sheets. Extra paper is available if you need it.
- 3. Show all the steps of your work clearly.

| Question | Points | Your Score |
|----------|--------|------------|
| Q1       | 14     |            |
| Q2       | 16     |            |
| Q3       | 20     |            |
| Q4       | 16     |            |
| Q5       | 14     |            |
| Q6       | 20     |            |
| TOTAL    | 100    |            |

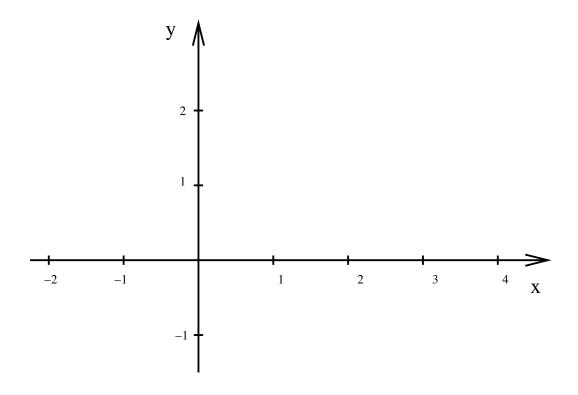


| <b>Q2</b> ][16 points] Give the definition of an <i>injective</i> function $f: A \to B$ .                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Give the definition of a surjective function $f:A\to B$ .                                                                                                                                                             |
| Give the definition of a bijective function $f:A\to B$ .                                                                                                                                                              |
| Suppose that the composite $f \circ g$ is bijective. Answer the following questions, either giving a reason for your affirmative answer or giving an example to support a negative answer.  1. Must $f$ be injective? |
| 2. Must $f$ be surjective?                                                                                                                                                                                            |
| 3. Must $g$ be injective?                                                                                                                                                                                             |
| 4. Must $g$ be surjective?                                                                                                                                                                                            |



**Q4]...** [16 points] Let  $\pi : \mathbb{R}^2 \to \mathbb{R} : (x,y) \mapsto x$  be the projection onto the first coordinate map. Is  $\pi$  injective? Is  $\pi$  surjective?

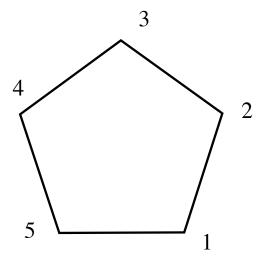
Let [1,2] denote the interval  $\{x \in R | 1 \le x \le 2\}$  in  $\mathbb{R}$ . Draw the set  $[1,2] \times [1,2] \subset \mathbb{R}^2$ .



Draw the preimage  $\pi^{-1}(\pi([1,2]\times[1,2]))$  in the diagram above. Is it true that

$$\pi^{-1}(\pi([1,2]\times[1,2])) = [1,2]\times[1,2]$$
?

 $\mathbf{Q5}]\dots[\mathbf{14}\ \mathbf{points}]$  How many symmetries does the regular pentagon shown have? List these symmetries.



Using the effect that each symmetry has on the vertices of the pentagon, describe a correspondence between the symmetries of the pentagon above and elements of  $Perm(\{1, 2, 3, 4, 5\})$ .

## $\mathbf{Q6}]\dots[\mathbf{20}\ \mathbf{points}]$ True or false.

- 1. The power set of a finite set A has  $|A|^2$  elements.
- 2. The set of all functions from a finite set A to itself has  $|A|^{|A|}$  elements.

- 3. If  $\chi_A$  denotes the characteristic function of a set A, then  $\chi_{A \cap B} = \chi_A \chi_B$ .
- $4. \ \overline{A \cup B} = \overline{A} \cup \overline{B}$
- 5. If f and g are bijective and  $f \circ g$  is defined, then  $(f \circ g)^{-1} = f^{-1} \circ g^{-1}$ .
- 6. A function  $f:A\to B$  is an element of the power set of  $A\times B$ .