Q1]...[10 points] Sketch the level curves $f=1, f=4, f=0, f=-1$, and $f=-4$ of the function $f(x, y)=x^{2}-4 y^{2}$.

Q2]...[10 points] Does the following limit exist? Give reasons for your answer.

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{4 x y}{x^{2}+2 y^{2}}
$$

Q3]...[12 points] The area of a triangular field of side lengths x, y and contained angle θ is given by $A=\frac{1}{2} x y \sin \theta$. Write down the differential $d A$, and use it to estimate the error in the area of a field with side measurements of 150 m and 200 m (each accurate to within $\pm 1 \mathrm{~m}$) and contained angle of 30° (accurate to within $\pm 2^{\circ}$).

Q4]... [12 points] Write down ∇f for the function $f(x, y, z)=x^{2} y^{3} z^{4}$.

In what direction is f increasing most rapidly at the point $(2,1,3)$?

What is the value of the maximum rate of change of f at the point $(2,1,3)$?

Q5]... [13 points] Prove that the two surfaces $x^{2}+y^{2}+z^{2}=25$ and $x^{2}=4 y^{2}+4 z^{2}$ are perpendicular (orthogonal) to each other at all points of intersection.

Q6]...[18 points] Suppose that $z=f(x, y)$ where $x=g(s, t)$ and $y=h(s, t)$. Verify that

$$
\frac{\partial^{2} z}{\partial t^{2}}=\frac{\partial^{2} z}{\partial x^{2}}\left(\frac{\partial x}{\partial t}\right)^{2}+2 \frac{\partial^{2} z}{\partial x \partial y} \frac{\partial x}{\partial t} \frac{\partial y}{\partial t}+\frac{\partial^{2} z}{\partial y^{2}}\left(\frac{\partial y}{\partial t}\right)^{2}+\frac{\partial z}{\partial x} \frac{\partial^{2} x}{\partial t^{2}}+\frac{\partial z}{\partial y} \frac{\partial^{2} y}{\partial t^{2}}
$$

Show all the steps involved. Also, write down (no work needs to be shown) a similar expression for $\frac{\partial^{2} z}{\partial s^{2}}$.

Bonus]... Suppose that $f(x, y)$ is differentiable at the point (a, b), and that you are told the values of the directional derivatives, $D_{\mathbf{u}} f(a, b)$ and $D_{\mathbf{v}} f(a, b)$, of f at the point (a, b) in the directions specified by the unit vectors \mathbf{u} and \mathbf{v}. Suppose that \mathbf{u} (resp. v) makes an angle ϕ_{u} (resp. ϕ_{v}) with the positive x-axis. What (minimal) condition must ϕ_{u} and ϕ_{v} satisfy in order to reclaim the values of $f_{x}(a, b)$ and $f_{y}(a, b)$? Show how to compute the values of $f_{x}(a, b)$ and $f_{y}(a, b)$ from the two directional derivatives above.

Rough Work Page

