Q1]...[10 points] Find and classify the critical points of the function

$$
f(x, y)=x^{4}+y^{4}-4 x y
$$

Q2]... [10 points] Use Lagrange multipliers to find the shortest distance from the origin to the surface $x y z^{2}=2$.

Q3]...[10 points] We are unable to anti-differentiate $e^{-x^{2}}$. However, we can still evaluate the double integral

$$
\int_{0}^{1} \int_{y}^{1} e^{-x^{2}} d x d y
$$

Show all the steps involved in evaluating this double integral.

Q4]... [10 points] Use double integrals to find the area of the portion of the conical surface $3 z^{2}=x^{2}+y^{2}$ where $1 \leq z \leq 2$.

Q5]. . . [10 points] Consider the triple integral

$$
\int_{0}^{1} \int_{z}^{1} \int_{0}^{x-z} f(x, y, z) d y d x d z
$$

Sketch the projections of the region of integration on the three coordinate planes.

Rewrite the integral so that the outermost integral is with respect to x and the innermost integral is with respect to z.

Bonus]... Find the surface area of the portion of the sphere $x^{2}+y^{2}+z^{2}=2$ of radius $\sqrt{2}$ which lies above the square with vertices $(\pm 1, \pm 1)$ in the $x y$-plane.

Rough Work Page

