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Introduction

Let T be a finitely generated group. Denote by an(I') (resp.o,(T")) the
number of subgroups of I of index n (resp. of index at most n). This paper
deals with the connection between the algebraic structure of the group T
and the arithmetic properties of the sequence a,(T'), n = 1,2,3,..., e.g., the
growth of the sequence a,(I") (“the subgroup growth”) or the properties of
the function {r(s) = 322, a.(I')n~* which encodes the sequence a,(T).

These studies have two sources of inspiration. The first is the notion of
word growth of groups; namely, denote by bZ(T') the number of elements of
I' whose length is n with respect to a fixed finite set ¥ of generators of I'.
Much work has been done on 4% (T') and its connection with I'- see [Ba], [Mi],
[Wol], [Gro], [Gri] and the references therein. To some extent bZ(I") measure
the growth of I' from below, while a,(I') express its growth from the top.
The two types of growth have some vague connection (cf. [LM3]), but the
word growth is used here only as a model for the kind of problems we want
to face: groups of (subgroup) polynomial growth, intermediate growth etc.
It should be noticed however that while the numbers Z(T') (but not their
growth) depend on a choice of generators, ¢,(I") depend only on I'. Thus the
numbers a,(I') are of inherent interest and not merely their growth. This
brings us to the second source of inspiration: the theory of rings of algebraic
integers and their zeta functions. Here if O is the ring of algebraic integers
in a number field k, one writes (x(s) = Xr,n~* where r, is the number of
ideals of O of index n. The function (x(s) is called the Dedekind ¢-function
of k and expresses much of the arithmetic of k. Similarly, we will study
(r(s) = Za,(T)n~* and describe the first steps of an analogous theory for
non-commutative groups.

The reader might wonder whether a,(I') is the right analogue to r,. One
might suggest other possibilities, for example looking at the number of normal
subgroups of index n. At this point it is unclear which definition would lead
to a richer theory. We, however, have limited ourselves in this survey to the
counting of all finite index subgroups.

Denote by R(T') the intersection of all finite index subgroups of I. Obvi-
ously, a,(T'/R(T)) = a.(T'). So, there is no harm in assuming R(I') = {1},
i.e., I' is a residually finite group. In this respect, the subgroup growth is
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more restricted than the word growth. Anyway, the class of residually finite
groups is rich enough, containing, for example, all the finitely generated linear
groups. Closely connected with a residually finite group T are its pro-finite
completion I' and its pro-p completion I';, p a prime. So our study will lead
to the territory of pro-finite groups.

The earliest paper in the mathematical literature which considered system-
atically counting finite index subgroups is, as far as we can tell, the paper of
Marshal Hall [Hal] in 1949. (So, subgroup growth is an older subject than
word growth! In fact, Hurwitz in 1902 had already studied a question which
is essentially counting finite index subgroups of surface groups— see [Me4] and
the references therein.) In that paper, Hall gave a recursive formula for the
number of subgroups of index n in the free group on r generators. Hall’s
method is based on associating with every subgroup H the permutational
representation of T' on the coset space I'/H. His method was considerably
simplified by various authors who also extended it to other groups which are
somehow close to free groups. Most significantly is the work of T. Miiller
who developed an elaborate theory for the subgroup growth of virtually free
groups. This direction is described in Section 1.

A completely new direction was started approximately ten years ago by
D. Segal, G. Smith and F. Grunewald ([Sm1], [Se] and [GSS]). They looked
at a,(T') for a nilpotent group I' and in particular defined the zeta function
(r(s) = Zan(T)n~*. It is particularly natural to do so for nilpotent groups
since:

(a) for such groups a,(I') grows polynomially, thus {r(s) has a non-empty

domain of congruence.

(b) {(r(s) has an “Euler factorizaton” (r(s) = [1{r(s).
)

By applying the work of Denef [Del] on the rationality of some p-adic inte-
grals they showed that the local factors (r ,(s) are rational. Just as important,
they computed many examples suggesting some very attractive conjectures.
These important developments are described in Section 2. This work accen-
tuated the importance of pro-p groups to the topic of counting subgroups and
led M. du Sautoy [dS3] to prove that the zeta function of a compact p-adic
analytic group is rational. His work in turn opens up the question of explic-
itly calculating these functions for semi-simple groups. Very little is known in
this direction (with the exception of some examples computed by Ilani {II3]).
Simultaneously, it became evident that the subgroup growth is a very useful
invariant for pro-p groups: A. Lubotzky and A. Mann proved that a pro-p
group G is p-adic analytic if and only if a,(G) grows polynomially. A. Shalev
[Sh1] showed that for non p-adic analytic groups the growth is at least n¢1°8",
Section 3 describes the current situation in this sub-area.

Section 4 considers the question: For which groups I', a,(T") grows poly-
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nomially? A complete answer was given by A. Lubotzky, A. Mann and D.
Segal ([LMS], [MS], [LM3], [Se]): This happens if and only if T is virtually
solvable of finite rank. The proof of this theorem required an ensemble of
tools such as the classification of finite simple groups, number theory and the
theories of p-adic Lie groups, algebraic groups and arithmetic groups. In par-
ticular, it was shown that the growth of congruence subgroups of arithmetic
groups {with non-solvable zariski closures) is not polynomially bounded. A
more detailed study was done by A. Lubotzky [Lu4] where it is shown that
for arithmetic groups in characteristic zero (e.g., I' = SL,(Z)) the growth of
the congruence subgroups is n¢1087/10glogn,

Moreover, this type of growth characterizes the congruence subgroup prop-
erty (CSP). Namely, if I fails to have CSP then the growth of o,(T') is strictly
larger— which means that I' has “many more” non-congruence subgroups than
congruence ones. On the other hand if I' has the congruence subgroup prop-
erty (e.g. I = SL,(Z),r > 3), 0.(T) grows as nClo8n/ 181067 g5 it has “inter-
mediate subgroup growth” between polynomial and exponential. It should,
however, be mentioned that free groups have super-exponential subgroup
growth (~ e®"1°67) and it is not difficult to give examples of solvable groups
of exponential subgroup growth. Recently D. Segal and A. Shalev [SS] gave
examples of solvable groups with fractionally exponential subgroup growth—
thus adding a completely new source of groups of intermediate subgroup
growth. The results on congruence subgroups are described in Section 5.
They also highlight the connection between counting finite index subgroups
and various counting problems in finite groups. The last mentioned area has
been developed dramatically in recent years- e.g., the work of Pyber [Pyl]-
and it gives fruits to our topic as well.

As the reader may have sensed already from this introduction— the topic of
“Subgroup Growth” is still in its infancy level. Extensive progress has been
made in recent years and more development is anticipated. This makes it
a wonderful topic for a series of talks in a conference— but it is an almost
impossible task to accomplish a complete survey. This survey should be
considered as a temporary report of the state of the art— calling attention
to this beautiful chapter of asymptotic group theory. This paper is a short
version of notes [Lu6] titled “Subgroup Growth” distributed at the Galway/St
Andrews conference on group theory 1993. It was however updated to cover
some work which was done in the last months of 1993.

This paper was written while the author was visiting the University of
Chicago whose warm hospitality and support are gratefully acknowledged.
We are also grateful to A. Mann for some helpful remarks.
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1. Counting subgroups and permutational represen-
tations

The first paper in the literature in which the question of counting subgroups
of a given index was considered is the 1949 paper of Marshal Hall [Hal] in
which a recursive formula was given for the number of subgroup of index n
in the free group on r generators. Hall’s method was extended and simplified
by Dey [De2] and Wolfhart [Wo) to get the following form: Let I’ be a finitely
generated group and H a subgroup of index n. There is an action of T on the
set I'/H of left cosets of H, which defines a permutational representation of
I’ on a set of n elements. Identify I'/H with the set {1,2,...,n} such that
H is corresponding to 1. There are (n — 1)! ways to make this identification.
Thus H defines (n — 1)! homomorphisms from I' to S,. Every such homo-
morphism ¢ : I' — §, satisfies (i) ¢(T') is transitive on {1,2,...,n} and (ii)
Stabr, (1) = {y € T|le(7)(1) = 1} = H. Conversely, every transitive per-
mutational representation of degree n (i.e. ¢ : I' = S, satisfying (i) ) defines
an index n subgroup H = Stabr, (1). Hence:

Proposition 1.1. Let t,(I') be the number of transitive permutational rep-
resentations of ' on the set {1,2,...,n}. Then an(T) = t,(I')/(n —1)! where
ax(T) is the number of subgroups of ' of indez n.

Example 1.2. T = Z,a,(T') = 1 for every n, while ¢,(T') is equal to the
number of n-cycles in S, which is (n — 1)L

It remains to count the number of transitive actions. Let the number of all
homomorphisms from I to S, be h,(T') = | Hom(T, S,)|. We have:

Lemma 1.3. Let T be a group. Then:

@ =3 (3 7]) @ boes (D)

k=1

ProOF. Indeed, for every 1 < k < n there are (Z:}) ways to choose the

orbit of 1, tx(I') ways to act on this orbit and h,_i(I') ways to act on its
complement in {1,2,...,n}. a

(1.1) and (1.3) imply:

Corollary 1.4. Let T be any group. Then:

a, () = h (T) - Z I huik (T) ax (T').

(n—1)
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For some groups, h, (I') are easy to compute, e.g., for the free group on r
generators h, (F,) = (r!)". Hence:

Corollary 1.5. (M. Hall [Hal]) Let F, be the free group on r generators.
Then:

n—1

an, (F)=n(nY) !~ kz_; (n = k) ag (F).

To estimate the growth of a,(T') for I' = F.(r > 2) we notice that
“most” r-tuples of permutations in S, acts transitively on {1,2,...,n}, i.e,

;Ln((%))- — 1 as n — oo. Indeed k, (F,) = (n!)" while the number of r-tuple

which are not transitive is bounded by P = Y32} ("'1) hi (F )bk (F,) =
ey (k 1) (k)" ((n k)!)" as the proof of Lemma 1.3 shows. Now, it is easy

£ 0.

'n')"

We mention in passing the result of Dixon [Di] that most r-tuples (r > 2)

of permutations of S, not merely act transitively but actually generate either
S, or A,. But the transitivity suffices to deduce:

to see that JLm

Proposition 1.6. (Newman [Ne2])
an (Fy) ~n-(nt)L
PROOF. By (L.1), an(F,) =t (F,)/(n — 1)! ~ 228 = n(nl)™2. 0
The next case which was considered in the literature is the case of a free
product T’ = #I_, A;. Clearly h,, (I') = II’_; hn(A;) and hence (1.4) implies:

Corollary 1.7. (Dey [De2]) LetT = *I_; A; and let ki = h,(A) =
| Hom(A;, Sy)|. Then

n-1

an (F) = ( 1)| (Hz_l h:;) E k)' I‘)(Hc..l ;s—k)°

Of course (1.5) is a special case of (1.7) when A; ~ Z and ki, = n! for every
i and n. However, in general it is not an easy task to compute h,(A) even if
A is a finite group. If A = Z/dZ then h, (Z/ dZ) is the number of degree n
permutations of order dividing d. This function has received a considerable
amount of attention (see [MW], [Wi], and the references therein).

For example Moser and Wyman [MW] proved:

Proposition 1.8. Let p be a prime. Then

1
nlogn — d

p— -1 1/P
ho(Z/pZ) ~ K, ezp( n 4+ nt/
where K, = p Y2 for p>2 and Ky = 2712 V4,
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Newman [Ne2] showed that also for a free product of finite cyclic groups
“most” permutational actions are transitive (provided this is not the infi-
nite dihederal group) and hence ¢, ~ h,. A case of particular interest is

PSL;(Z)~Z/2Z +Z/ 3Z. Hence
an( PSL2 (Z2)) ~ hn (Z/22) hn(Z/ 3Z)/(n — 1)!
and therefore one can deduce from (1.8) that:

Proposition 1.9. (Newman [Ne2])

an( PSLy(Z)) ~ (127212 ezp ("lzg" - % +n/? /o4 1‘%)

He also computed a,( PSL; (Z)) for many n — s. For example:
ai00( PSL2(Z)) = 159299552010504751878902805384624

We will come back to this in Section 5 when we will show that PSLy(Z) has
far fewer congruence subgroups. Thus the congruence subgroup property fails
in a very strong sense.

A different approach to computing a,( PSL2(Z)) is given by Stothers [St].
A recursive formula for this sequence was given by Godsil, Imrich, and Razen
in [GIR]. In a series of papers Gardy and Newman ([GN1], [GN2], [GN3])
established some linear recurrences when a,(I") are considered modulo a fixed
integer m when T is either a free group or a free product of cyclic groups.

Let us now look again at (1.4) for a general group I'. With the nota-
tion introduced there, write A(X) = Ap(X) = =2, an () X" and B(X) =
Br(X) = 224 bn (T)X™ where by (') = 1 and b, (I') = hn (T')/n!. Now, (1.4)

means
n

nba(T) =3 ag (T)bai (T)

k=1
which formally means

X B'(X) = A(X) B(X)

e ( )_ ,( )_ 3
AX) _ __B( X) = log(B(X))
and hence:

Proposition 1.10. B(X) = exp (fi(xé)- dX).
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Note that fA—(Xi)- dX = T2, an(X)X.

The last proposition has some non-trivial applications which are outside
the main theme of this paper- but just to mention in brief: For a prime p let
Tp(n) = fln(,’—'l where 7,(n) is the number of elements of order dividing p in
S,. Then: '

14 ) 7p(n)X" = exp (X + ?)
n=1

This is deduced from (1.10) by considering the finite (!) group I' = Z/ pZ.
So in some cases (1.10) can be useful to get information on Hom(T', S,) from
a, (T'), rather than the opposite direction which will be our more common
use of (1.10). More general results of this kind can be deduced very quickly
from (1.10) using various finite groups. Special cases of it were studied over
forty years ago (by more direct methods— see [MW] and [Wi] for history and
references).

Far reaching generalizations of most of the above mentioned results were
obtained recently by T. Miiller {Mu5]. According to (1.10), £b,(X) X" =

exp ( J -‘ﬂledX ), hence if G is a finite group of order m,

5 LBom(G, Soll o _ p(z adflG)Xd)

dlm

Denote P(X) = Po(X) = Lgpm 242 X¢ = =7 C; X, then P(X) is a real
polynomial with non-negative coefﬁc1ents C1#0,and C; =0 for 3 <i < m.
Miiller developed a machinery which gives a detailed asymptotic expansion
for the coefficients of exp(P(X)) for such P(X). This way he obtained
asymptotic expansion of Hom(G, S,) for every finite group G. The precise
result is too long to be mentioned here, but here is a corollary.

Theorem 1.11. (T. Miiller [Mu5]) Let G be a finite group of order m.
Then

djm
d<m

| Hom(G, S,.)| ~ Kgn(=1/m" m’( (1-1/mn+ 3 d(G) d/m)

where

-1/2 if2¢m
Ke = m~12 exp (—(“—"‘%&G)—P) if 2lm
Theorem 1.11 is an impressive generalization of Proposition 1.8 and [Wi],
which proved a similar result for cyclic groups (but Miiller’s result is stronger
even in the cyclic case as he gives the full expansion). More important for
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our context is that the Theorem can be used to handle a,(T') for I which is a
free product of finite groups in a way generalizing the deduction of (1.9) from
(1.8). Here also Miiller was able to give a detailed asymptotic expansion, but
we bring only the asymptotic values:

Theorem 1.12. ([Mu5]) LetT' = *_, G; be a free product of 2 < s < 00
non-trivial finite groups of orders my,...,m, respectively. If s = 2 assume
not both Gy and G are cyclic of order 2. Then

an(T') ~ Lr - ®p(n) asn — oo

where

2m;

Gmy (] 2
Lr=(27my-...-m,) Y2 exp <_ i 2t (amy, (G4)) )

Or(n) = n~ MO egp (h(F)n + 2 Z:,.'rm? ﬁif_‘) ndi/mi 4 1log n)

and

1—(my—1)-... (m,—1)

(L) = Euler characteristic of T' =

Note that Proposition 1.9 is a very special case of 1.12. As mentioned, the
results of Miiller are even stronger for the previously known special cases. For
example for I' = PSL;(Z) he shows:

an([) = (127€/?)~12p™/% exp (—% + /24 nl/3 4 —;—log n)

. {1 _pte_ Loy 13 ap Ty

6 94 36
23 i 67963 _, 2449841 .0 s }
t 2" 5180" ~ 3ezss0 | To(™)

We mention that along the way Miiller shows that if T is as in Theorem
1.12, then as for the free group, t,(I') ~ hn(T), i.e., “with probability one”
the actions of I' on {1,...,n} are transitive. The following generalization of
Dixon’s theorem mentioned above was conjectured in [Lu6] and was proved
by Pyber [Py2].

Theorem 1.13. Let Gy and G be two fized non-trivial finite groups, not
both of order 2. Then with probability 1 as n going to infinity, the images of
Gy and G generate either A, or S, when we run over all possible homomor-
phisms from Gy and G, (i.e., from G1 * G3) into S,.
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Remark 1.14. We restrict ourselves to the problem of counting all sub-
groups. Much work has been done on counting free subgroups of virtually
free groups. This is sometimes an easier problem as free subgroups corre-
spond to some kind of fixed point free actions which are somewhat easier
to be counted. The reader is referred to [Mul], [Mu2], [Mu3], [St2] and the
references therein.

2. Nilpotent groups and zeta functions

As mentioned in the first section, the subject of counting finite index sub-
groups started with the paper of M. Hall [Hal] in 1949 which dealt with free
groups. Over the next thirty-five years all papers on the topic elaborated
on this and studied mainly groups which are virtually free. Approximately
ten years ago, Dan Segal, Geff Smith and Fritz Grunewald ([Sm], [Se] and
[GSS]- the last one appeared only in 1988 but was circulated around a few
years earlier) initiated the study of the subject in “small” groups; solvable
and especially nilpotent. If I is a finitely generated nilpotent group then it is
particularly convenient to encode a,(I') (= the number of subgroups of index
n in T') via a Dirichlet series (r(s) = Za,(I')n™* = Z[I' : H|~* where H runs
over all finite index subgroups of I'. The function (r(s) is called the Zeta

function of I'. It has two pleasant properties:
(a) If T is nilpotent then a,(I') grows polynomially with n and (p(s) is
therefore not merely a formal series but actually converges for Re(s) >

a where o = (') is some real number.

(b) For a nilpotent T’ every subgroup H of index n = p* - ... p2r is an
intersection in a unique way of subgroups H; (1 < i < r) of index p{¥.
Thus a,(T) = I_,a,2:(T") and hence (r(s) has Euler product decom-

position (r(s) = [] ¢r, p(s) where the product runs over all primes and

»
(r,p(s) = 2o ap(T)p™™.

So the zeta function (r(s) of a nilpotent group share some of the features of
Dedekind zeta function of a number field K, (k(s) = [0 : M]~* where O is
the ring of integers of K and M runs over all finite index ideals of O. Many of
the zeta functions (r(s) which were computed in [Sm] and [GSS] are expressed
via such (x(s) and especially via {(s) = (o(s) = Zn~* = [[(1 —p~*)~.

It is very tempting to believe that the other propertiﬁ:s of the classical
zeta functions are also shared by (r(s), e.g., the existence of a functional
equation. But as of now very little is known. The reader might also suggest
that the appropriate analoge of Dedekind zeta function for groups should be
(A (s) = N[ : N]~* where N runs only over the normal subgroups of finite
index. Indeed, in [Sm] and [GSS], (2 (s) was also studied beside (r(s), as well
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as two other related functions. Only the future will tell which one is more
suitable for group theoretic use.
We start with the free abelian groups:

Theorem 2.1. Let T = Z" be the free abelian group of rank r. Then

(zr(s) =((s)- (s =1)-...-C(s =7 +1)
where ( is the classical Riemann (-function.

There are five (!) different proofs in the literature for this not too difficult,
yet not completely trivial, result. (See [BR2], [Sm], [I11], [GSS], and [Man3].
In [Lu$), the first four are described in detail.) We sketch here the proof from
[GSS], which while applied to a general nilpotent group gives the important
Theorem 2.13 below.

We start with a simple Lemma:

Lemma 2.2. Let T be a group and I its pro-finite completion. Then
(a) For every n, a,(I') = an(f‘) where for a pro-finite group G, by a,(G)
we mean the number of closed subgroups of indez n.
(d) If I s pro-nilpotent (i.e., if every finite quotient of T' is nilpotent or
equivalently I' = [[T'; where p runs over all primes and I'; denotes the
r
pro-p completion of ') then:
(i) Cra(s) = (ry(s)
i) {r(s) = [I¢ra(s)
»

This lemma is very simple and we omit the proof. But one warning should
be made: {rp(s) is defined as 1320a,:(T)p~*, i.e., encoding all subgroups of
p- power index. For general groups I' this is not the same as (r,(s) which
captures only the sub-normal subgroups of T' of p-power index.

Anyway for I' = Z" or more generally for I' nilpotent, we can compute
¢r(s) via (r,(s). Theorem 2.1 is therefore equivalent to the assertion:

Gayle) = T (1 = )"

=0

Let G = Z; with the standard basis {e1, €2,...,¢e,}. A finite index sub-
group H of G has a basis of the following form:

hl = ()‘117""/\1n)
h2 = (Oa AZ?,"',/\%).)
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hi=(0,...0, A, -, Ain)

hn=1(0,...,0,),)
obtained in the following way: H N Ze, = A,re,, and
(Hn Spa,nzp{e.-, €it1y- -+ €r}) = Ai; €;(modulo Spanzp{e;+1, cees€r}).

A basis of H of this form will be called a good basis. It is easy to see that
[G:H) =A™ oo Pl = p* - ... - p* (where \; = p*u; and u; is a
unit of Z,). Let M(H) denote the subset of the upper triangular matrices M
obtained by taking bases for H of the above form. Let u be the normalized
Haar measure of the additive group of the upper triangular matrices over Z,.

Lemma 2.3. u(M(H)) = (1—p~*)p~1p~2®...p7rer = (1-p~ ') I, il

PROOF. Note first that M(H) is an open set. If {hq,...,h,} is a good
basis as above, then any other good basis {hj,...,hL} can be written as
R} = Aii ui + viy1 where vy, is in the Z,-span of {hi4a,...,k.} and w; € Z}-
the group of units of Z,. Thus k, can be “moved” in a subset of Z, of
measure (1 —p™1)|A,| = (1 —p~1)p~*, h,_1 can be moved by multiplication
of A,_j, r—1 by a unit and by adding p*r Z,e,, so as an element of Z, x Z,, h,_;
can vary along a subset of measure (1 — p~!)p~®-1 . p~®r. Similarly h,_; can
be multiplied by Z;, i.e., Ar_gr—2 can be changed within a subset of Z, of
measure (1 — p~!)p~® -2 and the pair (A\;_z,-1, Ar-2,) can be changed by
addition of elements from the set Z,A._1, ,_1 €,—1+Zp A, .. This shows that
hr2 can be “moved” within a subset of Z of measure (1—p~')p=or-2.p==-1.
p~%r. In a similar way h; can be a vector from a subset of Z;““ of measure
(1—pY)p~+r.....p~ . Now, p is the product measure of all these. Hence:

/,L(M(H)) — (1 _ p—l)rp—rar p—(r—l)a,._l R p2a2 . p—-aq
as claimed. (]

As said before [G : H] = |Ann|™' - ...+ [As|™!. Thus:

Corollary 2.4. [G : H]_" = H—_';,l—-l_)rfM(H)lAllls Ca |)\,.T|’ . |A11|_1|)\22|-2 .
oot | Ane T dpee

So we can replace the sum (z:(s) = ZH?G [G : H]™* by an integral

1
r(8) = ———— At T dpe
CZP(S) (1 — p_l)r U,y MO | 11| I | H
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To evaluate this integral note that Uy M(H) is equal to the set all upper
triangular matrices over Z, with non-zero entries along the diagonal. Those

with determinant zero form a set of measure zero and therefore can be ignored.
Thus:

1
) = oy Pl Pl
1 )
= 1, [ Palide
Ty e,

where dv is the normalized Haar measure of Z,. A simple computation (which
will be used often) shows:
Lemma 2.5. [ [\[*dv = £2,(1 - p~)p~'p = 2

Thus (z; = (1 —p~*)7!(1 —p~ =)=t (1 — p~ (== which proves
(2.1). o

This proof can be carried a long way for an arbitrary finitely generated, tor-
sion free, nilpotent group I'. For such I' there is a series of normal subgroups
I'= Fl > Fg > ... 2 F,. Z P,-+1 = {1} such that F,‘/I‘H,.l ~Zfori = 1,...,7",
where r is the Hirsch length of T'. For ¢ = 1,...,7 choose z; € T'; such that
z;T'iy1 generate I';/T';yy. Every element z of ' can be represented uniquely
as ¢ = 7' ... 2% with a; € Z and {z,...,2,} is called a Maléev basis for
I'. P. Hall showed that by considering (a,...,a,) as the cordinates of z, the
group operation in I' are given by polynomial functions whose coeflicients are
in Q (See [Hal).

We can define now G = I'%¢ to be the space Z;, where the group operation
are given by the same polynomials expressing the group operations of I'. It
is easy to see that I'%» is a pro-p group and in fact isomorphic to the pro-p
completion of I'. Thus ¢{r, = {¢. The groups G; = I‘,~z ? define a filtration
G=Gl ZG2Z“'ZGTZGT+1 ={1} OfG

Definition 2.6. Let H be a finite index subgroup of G. A subset {h4,...,h,}
< H is called a good basis for H if for every i = 1,...,r, h;G;y1 generate
(H N G;) Giy1/ Gisr. This is indeed a basis for H and every element = of H
can be represented uniquely as = hy* - ...- k) with \; € Z,. (h* for h€ H
and X € Z,, is well defined- see [DDMS, Chapter 1]). We consider (Ay, ..., Az)
as the coordinates of z in Zj.

The coordinates of a good basis of H have the form:
hi=(0,...,0,i,..., ), t=1,...,r

(By an abuse of the language we will identify an element and its vector of
coordinates.) So as before we can associate with a good basis an upper
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triangular matrix. Again, [G : H] = IIi_; | A\;|™!. Let M(H) be the set of all
upper triangular r x r matrices over Z, obtained from good bases of H.

Lemma 2.7. M(H) is open and p(M(H)) = (1 — p~1)" I, | Al

(Note the |A;;| are determined by H and not by the given basis as |\;|™! =
|(H N G)Giy1/ Ginal)-

The proof of (2.7) is identical to that of (2.3). The commutativity of Z;,
did not play any role there. Just as for Z] we can deduce:

Proposition 2.8. ({r,(s) = (c(s) = (1 — p~) " [, [Iic, | Xis|*~*dp where M
is the union of all M(H) where H runs over all finite indezx subgroups of G.

Unlike the case G = Zj it is not so easy to describe M for general groups.
Still when this can be done (2.8) can give a complete answer. We illustrate
this by:

Theorem 2.9. Let ' be the discrete Heizenberg group, i.e.

1 a b
I'= 01 c¢}||abceZ
001

¢(s) (s —1)¢(2s — 2) ((2s — 3)
((3s —3)

PRrOOF. The Heizenberg group is P = (z,y, z| (z,y) = 2, (z,2) = (y,2) = 1)
and its pro-p completion G = I'; has, of course, the same presentation, just
being considered as a presentation within the category of pro-p groups. Let
G3( resp : G3) be the closed subgroup generated by z( resp : z and y) and
G1 = G. Proposition 2.8 gives a formula for {r,(s) = (¢(s), but we have to
recognize M- the set of upper triangular matrices which represent good bases

Then:

(r(s) =

A Az Ais
of finite index subgroups of G. If A = 0 A2 A2z | is such a matrix
0 0 a3

then by Definition 2.6 it represents a good basis for an open subgroup H if
and only if the following three conditions are satisfied:

(i) H is generated (as a closed subgroup) by z*1 y*2 213, yla2 202 and
Ass
z
(ii) H N Gy is generated by y*2 2’2 and z*** and
(iii) H N Gs is generated by 2
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So if we take H to be the subgroup generated by the three elementsin (i), then
it is open if and only if Ay - A2z - Ass # 0. Assume this, then (iii) is satisfied if
and only if the commutator (z?12 y*12 223 yhi2 pAas)(= (g1 gl22) = phu daz)
is in the subgroup generated by 2*3. This happens if and only if X33 divides
A1 Az in Z, i.e., v(As3) € v(A11) + v(A22), where v is the p-adic valuation.
If condition (iii) is satisfied then one easily checks that (ii) also follows. We
conclude that M is the set of all upper triangular matrices of type A above
for which all A\;(¢ = 1,2, 3) are non-zero and v(As3) < v(A11) + v(Az2). Thus,
by (2.8),

¢E(s)

Ga(s) = (L=p™) [ Phaal"™ Phasl* Aol
) 00 00 ej+ez

(1 _ p—l)—a(l _ p—l)az E Z p—elspeg(:—l)pea(s—2).

(4] =0€2 =0 €3 =0

In the last equality we are using Lemma 2.5. A simple computation now
finishes the proof of 2.9. m]

Let’s now look again in the general case of torsion free nilpotent groups:
Proposition 2.8 gives a quite explicit integral which expresses {r(s). The
only difficulty is the range of integration M. This is the set of all upper
triangular matrices with row-columns h; = (0,...,0, A, ..., i)yt =1,...,7,
which represent good bases for open subgroups of G = I';.

Lemma 2.10 An ordered set of rows {hy,...,h,} represents a good basis
of some finite index subgroup H of G if and only if
(i) M #0 and
(it) Ifi > j then the commutator (hi, hj) is in the subgroup generated by
hjt1,- ..y hey dee., there exist Bjyy,...,0B, in Z, such that (hi,h;) =
TR Yo
J+1 r
PROOF. Clearly a good basis, i.e., a basis {h,. .., h,} of H for which HNG; =
(hiy hit1, - - -, hy) should satisfy the conditions. Conversely, assume (i) and (ii)
are satisfied and let H be the subgroup generated by {hy,...,k,}. Condition
(i) implies that H is of finite index. Denote H; = (hi,..., h,) and assume by
induction that H; = H N G; for j < ¢ and let’s prove it for j = i: Condition
(ii) implies that H; is normal in H. As H;_; = H N G;-, is generated by
hi_1,hiy..., b, and H; is normal in H;_; we get: H;_y = H; - (hi_y). So:
HnG; = H_1NG; = H,--(E:)OG; = H; N G; = H; and the lemma is
proven. ]
Now comes a crucial observation: Conditions (i) and (ii) of Lemma 2.10
show that M is a definable subset of the upper triangular matrices over Z,.
This means that M can be described by first order statements. This is clear
for condition (i). But some explanation is needed regarding condition (ii):
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We mentioned earlier that P. Hall showed that by choosing a Maléev basis
for I' (and thus identifying I' with Z™ as a set) the group operation of I are
given by rational polynomials. In fact more is true: The k-power operation
in I is polynomial in I’ and &, i.e.,themap ¢ : T X Z=Z"xZ - T =2Z"
given by ¥(v,k) = v* for v € T and k € Z is a polynomial map from Z™*!
to Z" with rational coeflicients. Therefore this map can also be extended to
I‘ﬁ' X Zp — Fﬁ.

Thus if we look at condition (ii) it says that for the commutator of k; and
h; there exist Bjy1,...,Bn such that P(hje1, Bit1) - ... ¥(hr, Br) = (hiy ;).
As the commutator and the product are polynomials this is a statement in
the first order language. We have:

Proposition 2.11. The domain of integration M in Proposition 2.8 is'a
definable set.

Everything is now ready to apply the following theorem:

Theorem 2.12. (Denef [Del]) Let M be a definable subset of Z7 and
k:Z7 — Z, be a definable function. Then Zy(s) = [yy |h(z)|°d u, where dp
is the Haar measure of Zy', is a rational function of p~*.

A definable function h : Z7' — Z, is a function whose graph {(y, h(y)) €
Z7Hy € Z7'} is a definable subset.

While we will not go here into the proof of this Theorem, it is worth
mentioning that it relies on work of Macintyre [Mal] in logic. Macintyre
studied the first order theory of the p-adic numbers: He looked at the language
of valued fields (i.e., the language of fields plus one unary predicate saying
whether an element of the field is in the valued ring or not). Then added
to this language a sequence of unary predicate symbols Py, P, Ps, ... whose
interpretation is ¢ € P, if X is an n power in the field. Macintyre proved
that the theory of p-adic numbers admits an elimination of quantifiers in the
extended language. Now, each formula ¢(X1,X3,...,Xm) of the language
defines a set A = {(a) € Q}'|Q, = ¢(a)} (these are the “definable sets”).
The resutl of Macintyre means that every definable set has a simpler form: It
is a Boolean combination of sets of the forms {z € Q*|3y € Q, s.t.f(x) = y"}
with f € Zy[z4,...,%m] and n € N. Thus to prove Denef’s Theorem one can
assume that the domain of integration has such a form. This was the starting
point of the beautiful work of Denef who used it to prove some conjectures of
Serre and Igusa on the rationality of the generating function of the number
of solutions mod p" of some diophantine equations.

Theorem 2.12, Proposition 2.11 and Proposition 2.8 give us now the main
theorem of this chapter:
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Theorem 2.13. (Grunewald-Segal-Smith [GSS]) The p-th Euler factor
of the zeta function of a-finitely generated torsion free nilpotent group is a
rational function of p~°

Rationality means in particular that the coefficients ap(I') satisfie a linear
recurrence relation. So:

Corollary 2.14. There exist positive integers | and k such that the sequence
(a,i(T));5, satisfies a linear recurrence relation over Z of length at most k.

Remark 2.15 (Uniformity in p) The set M of Propositions 2.8 and 2.11
was actually definable in a way which is independent of the prime p. The
results of Denef [De2] and Macintyre [Ma2] show that in such a case the
rational functions of (2.12) and (2.13) may be taken to have numerators and
denominators of bounded degrees— independent of p. This also implies that
I and k in (2.14) can be chosen to work for all primes p. Grunewald, Segal
and Smith [GSS] suggest even a stronger possibility: Given I, a torsion free
finitely generated nilpotent group, then there exist finitely many rational
functions Wi(X,Y),...,W,(X,Y) of two variables over Q such that for each
prime p there is an ¢ for which {r,(s) = W;(p,p™*). The many computations
and results in [GSS] give quite strong support to conjecture that this is indeed
the case.

Remark 2.16. (Uniformity for groups of the same Hirsch length)) Recently
M. du Sautoy proved: For a given r, there exists a polynomial f(¥,X) in
QlY, X] such that if G is a finitely generated torsion free nilpotent group I' of
Hirsch length r and p a prime, then there exists a polynomial Q(X) € Q[X],

-

depending on I' and p, such {rp(s) = f(p p“)

We end this section mentioning some results about a different zeta function
associated with a finitely generated group. Namely, let d,.(I') be the number
of subgroups of I of index n whose profinite completion is isomorphic to I In
[GSS], is was shown that £r(s) = 3 dn(T)n~* has Euler product decomposi-
tion £r(s) = I1, ér p(8) and Theorem 2.13 is also valid for it. Moreover, there
exists a Z-Lie ring L, with fp,p(s) = {L,p(s) for almost every prime, where
5},4,(3) is defined in the clear analogous way. It is also shown there that for
almost all primes p,

6rys) = [, 1det ldun, ()

where G < GL(L) is the algebraic group of automorphisms of L, G} =
G(Q,)N End(L®Z,) and p, is the Haar integral of G(Q,) normalized so that
#(G(Z,)) = 1. The integral in (*) was computed by Igusa [Ig] for a reductive
group G (under some assumptions on the representation of G). Igusa’s work
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generalized earlier results of Satake and MacDonald for some classical groups.
In our context, G is typically not reductive. In [dSL], duSautoy and Lubotzky
show how to reduce the computation of (*), under some assumptions, to
the reductive case. This way they can use Igusa’s work to get: (a) explicit
computation of £r »(8) for some interesting examples, (b) uniformity results
of the type conjectured in [GSS]- see Remark 2.15 above- and (c) a functional
equation for fp (but not for ¢r).

Incidentally, the functional equation expresses the symmetry in a root sys-
tem of a reductive group G between the positive and negative roots- see [Ig]
and [dSL].

While the method applies only to fp » and not to £rp, it supports similar
conjectures for {rp.

For a comprehensive survey of various zeta functions associated with groups,
the reader is referred to [dS6].

3. Pro-p groups

The subject of counting finite index subgroups is intimately connected with
pro-finite groups. This is of no surprise and we have already made use of it.
This section will be devoted to counting questions for the pro-finite groups
themselves. Beside the intrinsic interest, some of the results on pro-finite
groups are useful for applications to discrete groups. In the context of pro-
finite groups G, a,(G) denotes of course the number of open subgroups of
index n. R X

For the free pro-finite group F3, there is nothing new to say: an(F,) =
an(Fy) and a,(F;) was discussed in length in Section 1. More interesting is
the case of a free pro-p group on r generators denoted F; ;.

For such a free pro-p group F = F, 3, ax(F) = 0 unless n = p* and a,:(F)
is equal to the number of subnormal subgroups of index p* in F,.

The number a,x(F; ) can be calculated recursively using P. Hall’s enumer-
ation principle.

Proposition 3.1. (Ilani [[11]) Fork >1,

T -
P"(F ,p) = Z( 1)t+1 [ ]pt(t R ap""(Fp‘(T—l),i)

t=1

where [ :

vector space F,.

] is the number of subspaces of codimension t in the r-dimensional

The above proposition gives a legitimate recursive formula, but it uses
ay (Fyp) to express ay (Fr;3) with s # r (s > r but I < k). Ilani (loc. cit.)
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was able to deduce from (3.1) a recursion relation which expresses a,«(F, ;)
using only ap(F, ;) for ¢t < k.

Proposition 3.2, Fork > 1,
k k—t(,. _
a(Fg) = (-1 | PO sy,
=1

Proposition 3.3. Let G = F,; be the free pro-p group on r > 2 generators.
Then:
r=1(pn_1)— _L.__l

pr- < apn(G) < pFr@"D

and hence:
lim(apn(G'))p—" = p(r_l)/ (p—l)'

In particular apn(G) grows exponentially as a function of p".

This last result was extended significantly by Mann [Man3] and Pyber-
Shalev [PS1]:

Theorem 3.4. Let G be a finitely generated pro-finite group. Then
(a) (Mann) If G is pro-solvable then a,(G) grows at most ezponentially.

(b) (Pyber-Shalev) If a,(G) grows super ezponentially (i.e., M@ is un-
bounded), then every finite groups is a quotient of some ﬁmte indez
subgroup of G.

Theorem 3.4(a) implies in particular that for a finitely generated solvable
group T, a,(T") grows at most exponentially (since a,(T') = an(l")). There are
finitely generated (pro-p and discrete) solvable groups of exponential growth,
e.g., ' = C,1Z. It is however interesting to observe that finitely presented
groups behave differently.

Proposition 3.5. Let G be a finitely presented solvable pro-p group. Then
an(G) < CV* for some constant C.

PrOOF. Wilson [Wn1] showed that G satisfies the Golod-Shafarevitz inequal-
ity. Namely, for arbitrary finite presentation (X; R) of G, one has

18] - (1x1 - @) = 26,

(*)
where d(G) denotes the minimal number of generators of G. Moreover, Wilson
deduced that this implies that there exists a constant ¢ such that d(H) < ¢[G :
H]/? for every open subgroup H of G. Indeed, if G has a presentation with
d generators and r relations and [G : H] = h, then H has a presentation
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with at most hd generators and hr relations. Hence, by (*) applied to H,
d(H)? < |G : H].

Now, a subgroup H of index n = p' in a pro-p group is contained in a
subgroup K of index p'~! and given K there are at most % possibilities
for H. From this one can easily deduce the proposition. a

Segal and Shalev [SS] constructed for every d > 2, finitely presented (pro-p
and discrete) metabelian groups G with a,(G) growth like C*'/*.

Let’s pass now to groups of “slow growth”. The next theorem characterizes
pro-p groups of polynomial subgroup growth (PSG) as the p-adic analytic pro-
p groups. It plays an important role in the characterization of discrete groups
of polynomial subgroup growth- to be described in the next chapter.

The equivalence of (a) and (b) is due to Lubotzky and Mann ([LM2], cf.
[DDMS]) while the equivalence of (a) and (c) was shown by Shalev [Shl]:

Theorem 3.6. Let G be a pro-p group. The following three conditions are
equivalent:
(a) G is a p-adic analytic group.
(b) G has polynomial subgroup growth (PSG), i.e., as(G) < n° for some
constant ¢ and every n.
(c) an(G) < CnlE=918" for some C,e > 0 and every n.

The theorem shows that there is a gap in the possible growths: if a pro-p
group has growth O(n(§~91°6%) for some € > 0, then it actually has polyno-
mial growth. The following result of Shalev [Shl] (see also [LS]) shows that

this is essentially best possible:

Theorem 3.7. Let G = Ker(SLy(F,{t]) = SLy(F,)). Then a,(G) =
O(n(?+)1o87) for every € > 0.

On the other hand, Shalev [Sh2] showed that in the category of pro-finite
groups there is no gap between polynomial and non-polynomial subgroup
growth. Namely:

Theorem 3.8.  For every function f:N — N such that f(1) > 1 and
l—"—l%f—(nﬁl — 00, there is a finitely generated non-PSG pro-finite group G satis-

fying a.(G) < f(n) for every n.

Lubotzky [Lu4] showed that among the finitely generated linear groups
there is a gap between polynomial and non-polynomial groups.

Theorem 3.9. Let T’ be a finitely generated non-PSG linear group (over
some field F'). Then there exists a constant C such that a, (') > nclosn/loslogn
for infinitely many n.
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As we will see in Section 5, this result is the best possible. The answer to
the following interesting problem however is not known.

Problem 3.10. Is there a gap between PSG and non-PSG in the category
of all finitely generated groups? If so, what is the minimum?

We believe that groups with growth nclogn/(loglogn)® exist. and maybe this
is the minimal possible non-PSG for general finitely generated groups.

Let’s go back to pro-p groups.

The next theorem deals with the regularity behavior of the number of finite
index subgroups in a compact p-adic analytic groups rather than the growth.
It is a far reaching extension of Theorem 2.13.

Theorem 3.11. (du Sautoy [dS3]) Let G be a compact p-adic analytic
group. Then (gp(3) = 322 a,mp~™ is a rational function in p~* with rational
coefficients.

The theorem does not assume that G is pro-p (though it has a pro-p sub-
group of finite index).

The proof of 3.11 borrows its main strategy from the proof of (2.13), i.e., to
express the zeta function as a p-adic integral over a set representing good bases
for finite index subgroups. But (3.11) is not merely much more difficult than
(2.13); it is also impractical. The parametrization given for (2.13), enables
(at least in principle, and as illustrated in the proof of (2.1) and in the proof
of (2.9), also in practice) to calculate the ¢-function explicitly. This however
seems impossible by the proof of (3.11). As of now the only non-nilpotent
pro-p groups for which the (-function was computed explicitly are congruence
subgroups of SL3(Z,), p > 3.

Theorem 3.12. (Ilani [I13]) Let p be a prime greater than two and G =
Ker(SLy(Zp) — SLy(F,)). Then G is a uniform pro-p group and

apn(G)
ptl ¢, n+1 p=2p—2  n4l (n+3)/2 1
— { 2(});11)(" l)p :' (11,_1)2(,,_1.1)17 A .:-)/:(p—l)z +1 P=1)2 (p+1) n odd
_pr: n+1 p+ n+1 his
-1 P - 1)@+ P + ”(p_l)2 + P-D2G+D) n even.
Hence
((s) = Cep(s) = Zapm(G)P™"

1 p7 p—-2s

T - )1 —p) (- 1)@ - D - )
p2p—2s( P+1 +pl—s(p2_p_1)_1 p—s+1 )
p—1 \(I=-p=2(1+p) " @-DA-p %) ' (p—1)(1-p2)

+
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The proof of (3.12) is based on another result of Ilani [I12] who studied the
connection between subgroups of G and sub-Lie-algebras of G - when G is a
uniform pro-p group. Recall (cf. [DDMS, Chapter 4]) that on such a G, a
Z,Lie algebra structure is defined.

Theorem 3.13. (Ilani [I12]) If G is a uniform pro-p group of dimension
d and p > d, then every (closed) subgroup of G is a Z,-sub-Lie algebra and
every Z,-sub-Lie algebra is a (closed) subgroup.

So, by (3.13), the problem of calculating a,~(G) is equivalent to calculating
the number of subalgebras of a Z,-Lie algebra. The latter is a much easier
task as was shown in [GSS]. In fact the method of “good bases” as presented
in Section 2, for abelian and nilpotent groups can be adapted for Lie algebras.
This can give a much easier proof for du Sautoy’s Theorem (3.11), but only
when p > dim(G). Anyway, (3.13) is useful for proving (3.12). The Z,-Lie
algebra corresponding to G = Ker(SLy(Z,) — SLy(F,)) is slz(Z,). The
calculation, however, needed for sly(Z,) is not that easy and Ilani used a
computer to work it out. He also gave a computer-free proof of (3.12) by
explicitly analyzing the subalgebras of sl5(Z,/ p” Z,), making an essential use
of the fact that sl3(Z,) is of a very small dimension, i.e., three. Neither of his
methods seems to suggest how to tackle the following interesting problem:

Problem 3.14. Let G = Ker(SLn(Z,) — SL,(F,)). Calculate (g(s).
More generally, if G is a Chevalley group scheme and G = Ker(G(Z,) —
G(F,)), calculate {g(s). It is natural to expect that {s(s) can be expressed
using invariants derived from the root system of G.

Theorem (3.13) enables one to translate the problem into a problem on the
Lie algebra sl,(Z,)~ at least if p is large enough.

4. Groups of polynomial subgroup growth

A group T is said to have polynomial subgroup growth (a PSG-group) if there
exists ¢ such that a,(T') < ne for every n € N, or equivalently o,(T') < n°*!
where 0,(T') = =% a.(T). Denote o(T') = limsup,,_,, %ﬂ.

Theorem 4.1. (Lubotzky-Mann-Segal [LMS], [MS], [LM3], [Se]) Let T be
a finitely generated residually finite group. Then I' has polynomial subgroup
growth if and only if T is virtually solvable of finite rank.

Recall that a group is virtually solvable if it contains a solvable subgroup
of finite index. It is of finite rank if every finitely generated subgroup is
generated by a bounded number of generators.
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Theorem 4.1 joins a number of theorems which have been proven in re-
cent years showing that some finiteness properties of infinite residually finite
groups implies finiteness or virtual solvability. It deserves a notice that vari-
ous old conjéctures which turned out to be false for general groups are true for
residually finite groups. The most famous example is the Burnside problem:
A finitely generated group of finite exponent can be infinite as was shown
by Adian and Novikov, but the recent solution of the restricted Burnside
problem by Zel’'manov says that a residually finite finitely generated group of
finite exponent is finite.

Similarly, the examples of simple infinite groups whose proper subgroup
are all cyclic, constructed by Ol'sanski and Rips show that finitely generated
groups of finite rank need not be solvable. The story with residually finite
groups is however different. Before stating the theorem, let us recall that a
group I' is said to have upper rank < r if the rank of every finite quotient of
it is at most r or equivalently the rank of I" as a pro-finite group is at most r.

Theorem 4.2. Let T’ be a finitely generated residually finite group. Then
the following three conditions are equivalent:

(1) T is of finite rank.
(2) T is of finite upper rank.
(3) T is virtually solvable of finite rank.

The equivalence of (1) and (3) is due to Lubotzky and Mann [LM2] and
the equivalence of (1) and (3) was proved by Mann and Segal [MS] and
independently by Wilson.

The proof of Theorem 4.1 is quite involved and uses diverse methods. As it
has already received various expositions in the literature (cf. [Manl], [DDMS},
and [LMS]), we will be very brief here:

The easier direction is the one saying that solvable groups of finite rank
are PSG (see [Se] and {Lu6]). For the other direction: assume first that I is
a subgroup of GL4(Q) for some d. It is therefore, as T is finitely generated,
a subgroup of A = G(Z[, ..., :]) where G is some Q-subgroup of GL, and
S = {p1,-..,m} is a finite set of primes and T is Zariski closed in G. As
our goal is to prove that I' is virtually solvable, one can even reduce to the
case where G is connected, semi-simple, and simply connected (see [LM3]).
Now, the strong approximation theorem for linear groups ([No], [MVW], or
[We]) can be applied to conclude that the closure of I' in the congruence
topology of A is a finite index subgroup Ag of A. It implies that for every
n, 0,(T) > 4n(T), where 0,(I') = ¥, a(I') and 7,(Ao) is the number of
congruence subgroups of index at most n in Ay. Using the Prime Number
Theorem, one can estimate v4,(A) to show that it does not grow polynomially
and hence I' is virtually solvable.
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The case of a general linear group over C is carried out by showing (us-
ing results of Jordan, Wehrfritz, and Platonov) that a non-virtually-solvable
finitely generated linear group over C has a representation over Q whose
image is not virtually solvable.

The case of residually-p groups is handled as follows: The pro-p completion
T'; of T is also PSG and hence by Theorem 3.6 above, it is p-adic analytic
hence linear over Q, and so I is linear over Q, and over C as well. Note that
by handling the residually-p case we also cover linear groups in positive char-
acteristic. In fact with slightly more care about the counting of congruence
subgroups (see Section 5) we have also just proven Theorem 3.9 (which is
actually valid for all residually-p groups).

To finish the proof of Theorem 4.1 for general I, one analyzes, using the
classification of finite simple groups, the possible composition factors of finite
quotients of I'. This (with the aid of the linear case) reduces the proof to the
case where every finite quotient of T" is solvable, i.e., ' is pro-solvable PSG
group. Such a group is shown to have finite rank, which means that I' has
finite upper rank. We can now apply Theorem 4.2 (whose proof is described
in detail in [DDMS]) to finish the proof of 4.1.

It should be emphasized that Theorem 4.1 is valid only for finitely gener-
ated groups. There are PSG-countable groups (even linear!) which are not
virtually solvable. For example, let I' = SL,(D), where D = Q N Z,. From
the congruence subgroup property, one deduces that I' = § L,.(Zp) which is a
p-adic analytic group. Thus, [ and T are PSG-groups. No characterization
of non-finitely generated PSG-groups is known. It is also not known exactly
when a general pro-finite group is PSG. Here are the two main results in this
direction:

Theorem 4.3. (Mann-Segal [MS], [Man2]) A pro-solvable group G is PSG
if and only if it is of finite rank.

Theorem 4.4. Let G be a pro-finite group of polynomial subgroup growth.
Then: G has normal subgroups K < H < G such that

(t) (G:H)< oo.

(it) H/K is a (finite or an infinite) product of finite simple groups [1;e; F;
such that each F; is a simple group of Lie type of the form L, (p*)
where n; (= the Lie-rank of F;) and r; are bounded.

(ttt) K is a pro-solvable group.

Theorem 4.4 is based on [MS] and an argument of Shalev. We finally
mention another result of Mann on PSG-pro-finite groups:

Proposition 4.5. A PSG-pro-finite group G is finitely generated (as a
pro-finite group).
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PROOF. Assume a,(G) = O(n") and let k be a positive integer. G* =
Gx---xG is endowed with a Haar measure p. A k-tuple @ = (ay,...,ax) € G*
does not generate G if and only if it is in some proper open subgroup. This
shows that

p({e € G¥lay,...,a; do not generate G}) < Y —i; =) a,,(kG)
1<[G:H]<co HI* =5 n

Now, since G is PSG, for some k, the left hand sum is strictly less than 1
and so with a positive probability, k& elements generate G, and in particular,
G is finitely generated. o

Moreover, in [KL] it was shown that for G = Z" (but in fact the argument
is valid for every PSG-group) we have:

(*) There ezists an integer k such that with probability 1, some k-tuple of
elements of G generate an open subgroup of G.

In particular, this applies for p-adic analytic pro-p groups. This made Mann
and Lubotzky ask:

Problem 4.6. Assume G is a pro-p group satisfying (). Is G p-adic
analytic?

A positive answer will give a nice probabilistic characterization of analytic
pro-p groups.

Mann ([Man3]) called a pro-finite group G for which there exists k with
p({a € G*|a generates G}) > 0, positively finitely generated (PFG for short).
So PSG is PFG. He also observes that in the proof of 4.5, it suffices to know
that m,(G) grows polynomially, where m,(G) is the number of maximal
subgroups of index n. He went ahead to show that for every pro-solvable
group, m,(G) grows polynomially, and hence,

Theorem 4.7. ([Man3]) A finitely generated pro-solvable group is positively
finitely generated.

Mann and Shalev [MaSh] showed an equivalence:

Theorem 4.8. A finitely generated pro-finite group G is positively finitely
generated if and only if m,(GQ) grows polynomially.

We will close this section with a few more results and questions about the
precise rate of growth of a,(G) for a PSG group.

It is actually more convenient to talk about 0,(G) = Yi,a:(G). Let
o(G) = limsup 222 Clearly o(G) < oo if and only if a,(G) and 0,(G)

logn
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grows (at most) polynomially- in which case we say G has polynomial sub-
group growth and a(G) is the smallest real number a such that 0,(G) =
0(n>*¢) for every € > 0.

If (c(s) = T an(G)n~* then o(G) can be read of (g(s); by the Tauberian
theorem, {(s) may be extended analytically to the half space Re(s) > a(G)
except for a pole at s = a(G). (If this is a simple pole then in fact 0,(G) =
O(n?®), but if it is, say, a double pole then we can only deduce 0,(G) =
O(n*logn)). Anyway, when (g(s) is explicitly known or in those cases in
which it was proved to be rational we can derive some conclusions on a(G)
and hence on the rate of growth of ¢,(G).

For example, let G be a p-adic analytic pro-p group. By du Sautoy’s
theorem (g(s) is a rational function of p~* with rational coefficients. Actually,
his result is more precise: it also says that the denominator of {g(s) is of the
form II}_; (1 — p~®*~%) for some ! € NU {0}, and ay,...,ai, by,...,b € Z.
This shows that for real s the denominator is zero only for s = —b;/a;, ¢ =
1,...,1 In particular we deduce:

Proposition 4.9. (du Sautoy [dS3]) Let G be a p-adic analytic pro-p group.
Then o(G) = limsup 1351::—5"(91 is rational.

n

The analogous result for nilpotent groups is not known, but it is quite likely
to hold:

Conjecture 4.10. Let I be a nilpotent group then a(T') is rational.

It is not difficult to find examples which show that a(G) can be ratio-
nal and not necessarily integer. For example, Theorem 2.9 shows that if
G = T is the pro-p completion of the Heizenberg group then (g(s) =

M’)(’(’_tlfgg‘_’_’;) (2=3) e, ((s) has poles for s = 0,1 and 2 (with a dou-

ble pole for s = 1). Anyway o(G) = 2. The same remark applies for a(T)
when T is the discrete Heizenberg group. In this sense subgroup growth is
different from the classical word growth b,(T"). Recall that b,(T') is defined
as the number of elements of I' of length at most n with respect to a fixed
finite set of generators . Denote S(T') = limsup l—"’-f(—)b—g"—,(‘D-. It is easy to see
that B(I') depends only on I' and not on £, and that if T is nilpotent then
B(T) < oo. In [Ba), Bass gave a formula for 3(T'), from which one sees that
B(I') is always an integer. Moreover there are two constant 0 < C,,C; € R
such that for every n, Cy;nf@ < b(T) £ C; nfT). It is not known if an
analogue of this later result holds for ,,(T"), when T is a nilpotent group and
B(T) is replaced by o(T'). This is not the case for uniform pro-p groups: The
computation of Ilani (3.12), shows that for G = Ker(SL2(Z,) — SL:(F,)),
an(G) grows like nlogn and so o,(I') grows as n?logn, so 0,(G) = O(n?*®)
for every e > 0 but not O(n?).
Anyway, it will be very interesting to answer the foliowing:

Downloaded from Cambridge Books Online by IP 129.15.11.97 on Tue Apr 26 15:24:43 BST 2011.
http://dx.doi.org/10.1017/CBO9780511629297.008
Cambridge Books Online © Cambridge University Press, 2011




LuBoTzKY: COUNTING FINITE INDEX SUBGROUPS 393

Problem 4.11. For a finitely generated nilpotent group and for a uniform
pro-p group G, give a formula for a(G).

Another remark is in order here: When T’ is a finitely generated torsion free
nilpotent group and H is a finite index subgroup of I'. Then it is shown in
[GSS], that a(G) = a(H). This is not always the case for groups of polynomial
subgroup growth. It was observed in [LM3] that if T is the infinite dihedral
group then a(I') = 2 while for the infinite cyclic group H, which is an index
two subgroup in I', a(H) = 1. This is again inconsistent with word growth:
there S(T') = B(H) whenever H is a finite index subgroup of I'. The study
of a( H) when H varies over finite index subgroups of a PSG group deserves
some more attention.

5. Counting congruence subgroups

This section is devoted to the growth of the number of congruence subgroups
in an arithmetic group. Beside its intrinsic interest as a “non-commutative
analytic number theory”, these examples have produced the first examples of
groups of intermediate subgroup growth- i.e., growth which is greater than
polynomial and smaller than exponential. (More examples at the higher end
of the intermediate growth range were given recently by Dan Segal and Aner
Shalev [SS].)

We shall also relate the subgroup growth of arithmetic groups with the
congruence subgroup property, showing that the latter can be characterized
by means of subgroup growth. This enables one to formulate a “congruence
subgroup problem” for groups which do not have an arithmetic structure.
In particular, it suggests the study of the subgroup growth of fundamental
groups of hyperbolic manifolds. We will present some (very) partial results
in this direction.

Let us start with counting the congruence subgroups: It turns out that
there is a fundamental difference between arithmetic groups over global fields
in characteristic zero and those of positive characteristic. They are different
in the results as well as in the methods of proof. We will therefore handle
them separately. The notations however will be presented simultaneously.

Let K be either Q- the field of rational numbers or F,(z)- the field of ra-
tional functions over the finite field of order p. Let O be the ring of integers of
K,ie.,O0 = Zor F,[z]. Let G be a simple, simply connected, connected alge-
braic group defined over K. For the simplicity of the exposition we will also
assume that G splits over K. (The interested reader is referred to [Lu4] for
the general case including S-arithmetic groups etc. Most readers will find it
useful to assume G = SL,. All essential ideas appear already in this case.) So
G can be thought of as a Chevalley group (defined over Z) and we fix an em-
bedding of G into GL,. Let T' = G(O) (e.g., I' = SL.(Z) or ' = SL.(F,[t])).
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For an ideal I # {0} of O we denote I'(I) = Ker(G(O) — G(0O/I)). As O/I
is finite, I'(J) is always a finite index normal subgroup- called a principal
congruence subgroup. A subgroup A of I' is called a congruence subgroup if
it contains I'(J) for some I # {0}.

Let 4,(T") denote the number of congruence subgroups of I of index at most
n.

Theorem 5.1. (Lubotzky [Lud]) Assume char(K) = 0. Then there erist
positive constants Cy and C; such that

ncl logn/log logn < "/n(r) < an logn/log logn‘

Theorem 5.2. (Lubotzky [Lu4]) Assume char(K) =p > 0. Then there
exists positive constants C3 and C4 such that

an logn < ')’n(r) < nC’4(logﬂ)2

The theorems show that in case all finite index subgroups of I' are con-
gruence subgroups, I' has intermediate subgroup growth. This is known to
be the case for I' = SL,(O) when r > 3 (cf. [Rp), [Ra] and the references
therein). Hence:

Corollary 5.3.
(a) IfI" — SL,-(Z), r> 3) then n01 logn/log logn < U,,(F) < anlogn/log logn.
() IfT = SL,(F,[t]), r > 3, then n¥s18n < g, (T') < nCsllogn)’,
Here C1,C,,C5 and Cy are some positive constants, and o,(T') is the num-
ber of subgroups of T’ of index at most n.

In fact the proof can be used to get some explicit estimate on these constants.
For example for ' = SLy(Z) we can take in Theorem 5.1, C; = 3 and
02 = 18.

We now sketch the proofs of Theorem 5.1 and 5.2. In order to visualize
better the difference between the zero and positive characteristic we will give
first the proofs for the lower bounds:

Proof of lower bound of (5.1)

By the strong approximation theorem (see [Pr]- but think on SL,), T =
G(Z) is mapped onto G(Z/MZ) for every M € Z. f M = pi* - ... p*
where p;, ¢ = 1,...,1, are different primes, then by the Chinese Remainder
Theorem G(Z/M Z) = ITi_,G(Z [p{“Z). For every prime p, G(F, ) has a cyclic
subgroup of order p— 1 (coming from the torus isomorphic to (]F;)"‘“"(G) since
G splits; but also in general a theorem of Lang ensures that over a finite field,
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there is at least a one dimensional torus). Thus if M =p, -...- p; a product
of different primes chosen so that for : = 1,...,¢, p; = 1( mod m) for some
number m, then G(Z/MZ) contains a subgroup isomorphic to (Z/mZ)".
Now if m itself is a product of distinct primes, say, M = q1 ... ¢ then
(Z/mZ) ~1I:_,(Z/q; Z) contains at least H,_qu /* = m?*/4 subgroups. As
the order of G(Z /MZ) is at most M¢ with d = dlmG, we get m*"/4 subgroups
of I of index < M4™F We show now how the primes p; and ¢; can be chosen
to ensure that -y, > nClogn/loglogn {51 some constant C:

Denote v = Euler constant = 0.57721... and 7' = e™. Let N = n"'/4
where d = dim(G), 7 = log(N) and B = log(7) = log log(N). Let ¢1,...,¢,
be the list of primes smaller than 8 and m = II;_,¢;. By the prime number
theorem m =~ €® = 7 and by [E], Ex. 1.20, p. 31], oy ® —,52 M Let
II = II(m7/ log log T;m, 1) be the set of the ¢ primes less than mT/ log log 7
and congruent to 1 mod m. From the prime number theorem along arithmetic
progressions (cf. [El, Theorem 8.8, p. 277]) it follows that

mT 1 T
¢(m)(log log ) log(m~/ log log 7') 2+ logr

(where here and always f ~ ¢ if hm i('l)l =1). The same theorem says also
that the product M of these ¢ prlmes satisfies:

T log N

/

log M ~

o8 m/p(m)- log logT 7
The discussion above shows that between I' and I'(M) there are at least

mt'/4 subgroups whose 1ndex 1s at most M d whxch is approx1mately N =q,

Thus 7, > m*/4, so log Ty logm ~ As T = llogn we deduce

16»/’ logf
that log ¥ ap S:Jfg)? This proves the lower bound with C; = 5. 0

Proof of lower bound of (5.2)

The group I' = G(F,[t]) is dense in the pro-finite group H = G(F,([t]]),
where F,[[t]] denotes the ring of formal power series over F,. The group H
is virtually pro-p. In fact, it is not difficult to see (cf. [LS]) that H(1) =
Ker(G(F,[[t]] = G(F,)) is a pro-p group. H(1) has analytic structure over
F,[[t]], but it is not p-adic analytic group. For example, it has an infinite tor-
sion subgroup while p-adic analytic pro-p group cannot have such a subgroup
(cf. [DDMS]. See also [LS] for a more general statement). Thus by Shalev’s
theorem (3.6), on(H(1)) and so also 0,(H) grows at least as n®!°¢" for a
suitable constant C. The same applies also for I', which proves our claim. O
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Proof of the upper bound of (5.1)
A crucial ingredient in the proof of the upper bound is the following:

Proposition 5.4. (“level < index”) Let ' = G(Z) be as in 5.1 and H a
congruence subgroup of I'. Then H D I'(m) for some m < [I': HJ.

Corollary 5.5. LetT = G(Z) be as in (5.1). Then

() < 32 1GE/m)],

m=1

where for a finite group F we denote by || F|| the total number of its subgroups.

The problem is therefore transformed now to a problem on finite groups.
In the following proposition we collect some useful easy results:

Proposition 5.6. Let F be a finite group. Then:
(i) rank(F) <log,|F|.
(i6) |IF|| < |F| Tonke),

Proposition 5.7.  There ezists a constant C = C(QG) such that rank(G(F,))
is bounded by C.

PROOF. By a result of Aschbacher and Guralnick ([AG]) every finite group
is generated by a solvable subgroup plus one element. It suffices therefore to
bound the number of generators of solvable subgroups of G(F,). Let M be a
solvable subgroup of G(F,). So M = PQ where P is a p-sylow subgroup of M
and Q is of order prime to p. As G < GL,, the order of P is bounded by p"
and so d(P) < r%. Now @, being of order prime to p, can be lifted to GL.(C).
(This is a classical result. Here is a less classical proof: @ < GL,(F,).
Look at the preimage R of @ in GL,(Z,). It has a normal pro-p subgroup
N = Ker(GL,(Z,) — GL,(F,)) and R/N = Q is of order prime to p. So
by the Schur-Zassenhaus theorem, R is a semi-direct product of N and @’
where @’ is a subgroup of R isomorphic to . Thus @ is isomorphic to a
subgroup of GL,(Z,) and of GL,(C)). By a classical theorem of Jordan, @
has an abelian subgroup A of bounded index. A is dia,gonaliza,ble and so
d(A) < r. Altogether d(Q) is bounded as a function of r and so is d(M) a.nd
rank(G(F,)).

Corollary 5.8. rank(G(Z/p®Z)) is bounded independent of p and a.
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PROOF. As all G(Z/p*Z) are images of G(Z,), it suffices to prove that
G(Z,) or GL,(Z,) is of bounded rank (depending on r but not on p). Now,
by [DDMS, Chapter 5], N = Ker(GL,(Z,) - GL,(F,)) is a uniform pro-p

group of rank r?. This with (5.7) proves (5.8). u]
Now we can complete the proof of the upper bound of (5.1): For m € Z,
write m = p{* -...-p;" where p;, i = 1...,! are the distinct prime divisors of
. !
m. By the prime number theorem [ < 22— and so by (5.8):

rank (G(Z /mZ))

il

rank (fI G(Z /pf“Z))

=1

IN

- ronk (625 2) = 0 (i),

= log logm

(5.6 ii ) now implies that ||G(Z/mZ)| < mCrets=. This finishes the proof
in light of (5.5). o

Remark 5.9. We used along the way the result of Ashbacher and Guralnick
([AG]) which requires the classification of finite simple groups. But, as was
noticed by L. Pyber, this can be avoided (see [Lu4]).

Proof of upper bound of (5.2)

Proposition 5.10. Let I' = G(F,[t]) be as in (5.2). Then there ezists a
constant C such that any congruence subgroup of T' of index n contains a
subnormal congruence subgroup of indezx at most n®.

The proof is based on Babai-Cameron-Palfy theorem [BCP].

Proposition 5.11. Every subnormal congruence subgroup of I' = G(F,[t])
of index n contains a principal congruence subgroup of index at most nC' logn
for some constant C'.

Proposition 5.12. (L. Pyber [Py2]) If F is a finite group, then a,(F) <
|F|2logn.

The last three propositions imply the upper bound of (5.2). u]

We turn now back to assume char(K) = 0 so I' = G(Z). The congruence
subgroups of I' form a basis of neighborhoods of the identity of I' and thus
define a topology on I'- called the congruence topology. The completion of T’
wth respect to this topology is G(Z), by the strong approximation theorem. In
general the congruence topology is weaker than the pro-finite topology and so
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the homomorphism  : I' = CT(i) — G(Z) induced by the indentity map from
T to I' is an epimorphism but not a monomorphism. It is a monomorphism
if and only if every finite index subgroup of I is a congruence subgroup. The
original congruence subgroup problem asks whether this is the case, but it
turns out that all the important applications of it need only that Ker(x) is
finite. So following the ususal tradition we say that I' has the congruence
subgroup property (CSP for short) if Ker(n) is finite. It is not difficult to
see that in this case 0, (I') has the same type of growth as 4,(T'). The next
result, from Lubotzky [Lud], actually shows that CSP can be characterized
by the property that 0,(T") has the same type of growth as 4,(I'). The result
is even stronger:

Theorem 5.13. LetT = G(Z) as in (5.1). Then T has the congruence
subgroup property if and only if for every € > 0 there exists a constant C,
such that ,(T) < Cen® 8™ for every n.

Theorem 5.13 is maybe even more interesting when expressed in the nega-
tive form: If T' does not have CSP then for some € > 0, 0,(T") > n®l¢" for
infinitely many n’s, i.e., the subgroup rate of growth of T is strictly bigger
than the rate of growth of the congruence subgroups.

Another interesting aspect of Theorem 5.13 is that it gives a purely group
theoretical characterization to CSP, which is an arithmetic property. In par-
ticular, we can now formulate a congruence subgroup problem for groups with-
out an arithmetic structure. This. is especially interesting for non-arithmetic
lattices in the simple Lie groups of rank one SO(n,1) and SU(n,1) in which
non-arithmetic lattices are known to exist (for every n in the first family and
for n = 2 and 3 in the second). It is very natural to conjecture (and it is com-
patible with Serre’s conjecture on CSP- see [Sr]) that all lattices in SO(n,1)
and SO(U, 1) have subgroup growth at least n®1°8". We actually believe that
they even have exponential or super-exponential subgroup growth. At this
point, however, only a very partial result is known:

Proposition 5.14.
(i) Let H = S0O(2,1) & PSLy(R) and T a lattice (= a discrete subgroup
of finite covolume) in H. Then T’ has a super-ezxponential growth.
(ii)) Let H = SO(3,1) =~ PSLy(C) and I a lattice in H. Then on(T') >

nClo8™ for some constant C.

PROOF. (i) The structure of lattices in PSLy(R) is well known: I either has
a free non-abelian subgroup of finite index or it contains a finite index surface
group of genus g > 2. Such a surface group is mapped epimorphically onto a
free group on g generators. Thus in either case the subgroup growth of I' is
like that of a free group, i.e., super-exponential by (1.6).
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(i1) T being a lattice in SO(3,1) has a torsion free subgroup A which is a
fundamental group of a 3-manifold. A 3-manifold group always has a pre-
sentation with no more relations than generators (see [Lul] for details). By
choosing A in a suitable way we can arrange that for p = 2 the pro-p com-
plion A; of A, satisfies d(A;) = d > 5 and it has a presentation (as a pro-p
group) with r relation where r < d. Thus r < %, i.e., Aj does not satisfy the
Golod-Shafarevitz inequality. This implies ([Lul, Theorem 1], [DDMS]) that
A; is not p-adic analytic. Thus by (3.6), 0,(A;) grows at least at n“1°6™ and
by (2.2) the same applies for A and hence for T'. o

Experience with lattices in semi-simple groups show that discrete groups
with Kazdhan property (T) tend to have the CSP. We end this chapter with
a conjecture:

Conjecture 5.15. Let I be a discrete group with Kazdhan property (T).
Then 0,(I') grows at most exponentially (one can even aspire to more ambi-
tious bounds).

Recall that I' has property (T) if the trivial representation of I is an isolated
point in the dual space of the irreducible unitary representations of I'. Though
not apparent from the definition, one can show that property (T) puts severe
restrictions on the finite quotients of I' (cf. [Lu5]) so it is not unrealistic to
expect some control on the subgroup growth.

A discrete group is called amenable if L>(T") carries an invariant mean.
Amenable groups are very different from groups with property (T). Still we
wonder whether for a finitely generated amenable group I', o,(I') grows at
most exponentially. Solvable groups are amenable and for solvable groups,
Mann [Man3] indeed showed that their subgroup growth is at most exponen-
tial. (Note however that for some solvable groups it is exponential.)
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