1. Equation in Stokes' Theorem. Read the textbook for the conditions on \mathbf{F}, S and ∂S.

$$
\begin{equation*}
\oint_{\partial S} \mathbf{F} \cdot d \mathbf{r}=\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S} \tag{1}
\end{equation*}
$$

2. Stokes implies Green. Let $\mathbf{F}=\langle P, Q\rangle$ be a vector field on a domain D with boundary C satisfying the conditions of Green's Theorem.

- Consider $\mathbf{F}=\langle P, Q, 0\rangle$ as a vector field in 3-dimensions, where P and Q are thought of as functions of (x, y, z) which do not explicitly involve the variable z. A computation gives $\nabla \times \mathbf{F}=\left\langle 0,0, Q_{x}-P_{y}\right\rangle$.
- The region D can be viewed as a parametric surface in 3-dimensions, by $\mathbf{r}(x, y)=\langle x, y, 0\rangle$. We find that $d \mathbf{S}=\hat{\mathbf{k}} d x d y$, and so $(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=\left[Q_{x}-P_{y}\right] d x d y$.
- Thus, the left hand side of equation (1) becomes

$$
\oint_{\partial S} \mathbf{F} \cdot d \mathbf{r}=\oint_{\partial S}\langle P, Q, 0\rangle \cdot d \mathbf{r}=\oint_{C} P d x+Q d y=\oint_{C} \mathbf{F} \cdot d \mathbf{r}
$$

and the right hand side becomes

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=\iint_{D}\left[Q_{x}-P_{y}\right] d x d y
$$

Combining these two gives Green's Theorem.
3. Geometric definition of Curl. Let \mathbf{F} be a smooth vector field. Let $\hat{\mathbf{u}}$ be a unit vector based at a point P in space, and let C_{t} denote the circle of radius t centered on P in the plane normal to $\hat{\mathbf{u}}$. The circle C_{t} is oriented in a right hand fashion with respect to $\hat{\mathbf{u}}$; this circle is the boundary of a disk D_{t} centered at P. Then

$$
\begin{equation*}
\hat{\mathbf{u}} \cdot(\nabla \times \mathbf{F})_{(P)}=\lim _{t \rightarrow 0} \frac{\oint_{C_{t}} \mathbf{F} \cdot d \mathbf{r}}{\pi t^{2}} \tag{2}
\end{equation*}
$$

We see this by replacing the line integral in the numerator by a surface integral over D_{t} and noting that $d \mathbf{S}=\hat{\mathbf{u}} d S$.

$$
\lim _{t \rightarrow 0} \frac{\iint_{D_{t}}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}}{\pi t^{2}}=\lim _{t \rightarrow 0} \frac{\iint_{D_{t}} \hat{\mathbf{u}} \cdot(\nabla \times \mathbf{F}) d S}{\pi t^{2}}=\hat{\mathbf{u}} \cdot(\nabla \times \mathbf{F})_{(P)}
$$

Now equation (2) means that the projection of $(\nabla \times \mathbf{F})_{(P)}$ in the $\hat{\mathbf{u}}$ direction is equal to the (limit of the) circulation of \mathbf{F} about P in the plane perpendicular to $\hat{\mathbf{u}}$ per unit area.
Note that the maximum circulation of \mathbf{F} about the point P occurs in the plane with normal vector $(\nabla \times \mathbf{F})_{(P)}$.
4. If $\mathbf{F}=\nabla \times \mathbf{G}$ then $\iint_{S} \mathbf{F} \cdot d \mathbf{S}=0$ for every closed surface S. Here is the idea. First, cut a disk out of the surface S by cutting along a suitable simple closed curve C. Call the disk S_{1} and the remainder S_{2}. It the boundary of S_{1} is C, then the boundary of S_{2} will be $-C$ (the curve C with the opposite orientation).
Stokes' Theorem applied to the vector field G and the surface S_{1} gives that

$$
\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S}=\iint_{S_{1}}(\nabla \times \mathbf{G}) \cdot d \mathbf{S} \stackrel{\text { Stokes }}{=} \oint_{\partial S_{1}} \mathbf{G} \cdot d \mathbf{r}=\oint_{C} \mathbf{G} \cdot d \mathbf{r}
$$

and, applied to the vector field \mathbf{G} and the surface S_{2} gives that

$$
\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S}=\iint_{S_{2}}(\nabla \times \mathbf{G}) \cdot d \mathbf{S} \stackrel{\text { Stokes }}{=} \oint_{\partial S_{2}} \mathbf{G} \cdot d \mathbf{r}=\oint_{-C} \mathbf{G} \cdot d \mathbf{r}=-\oint_{C} \mathbf{G} \cdot d \mathbf{r}
$$

Adding, we get

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S}+\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S}=0
$$

Alternative Method. You could also think of this as being an immediate consequence of Stokes' Theorem as follows.

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S}(\nabla \times \mathbf{G}) \cdot d \mathbf{S} \stackrel{\text { Stokes }}{=} \oint_{\partial S} \mathbf{G} \cdot d \mathbf{r}=0
$$

because the surface S is closed, and so has empty boundary $\partial S=\emptyset$. Therefore the last integral is over an empty curve and so is automatically equal to 0 . In you don't like this reasoning, you can still use the argument given in the paragraph above.
5. Remark. The Divergence Theorem almost gives the result above. If $\mathbf{F}=\nabla \times \mathbf{G}$, then $\nabla \cdot \mathbf{F}=\nabla \cdot(\nabla \times \mathbf{G})=0$. Therefore, if the closed surface S is the boundary of a region E where \mathbf{F} and its divergence are defined, then the Divergence Theorem gives

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{E}(\nabla \cdot \mathbf{F}) d V=\iiint_{E} 0 d V=0
$$

But it may happen that \mathbf{F} and its divergence is not defined over all points of E. In this case, the Divergence Theorem will not apply. However, the argument in item 4 still works in this case.
For example, the vector field

$$
\mathbf{F}=\frac{\langle x, y, z\rangle}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \quad(x, y, z) \neq(0,0,0)
$$

safisfies

- \mathbf{F} and $\nabla \cdot \mathbf{F}$ are not defined at $(0,0,0)$.
- $\nabla \cdot \mathbf{F}=0$
- Let S denote the unit sphere $x^{2}+y^{2}+z^{2}=1$. Then $d \mathbf{S}=\langle x, y, z\rangle d S$ and

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iint_{S} \frac{\langle x, y, z\rangle}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} \cdot\langle x, y, z\rangle d S=\iint_{S} \frac{1^{2}}{1^{3}} d S=4 \pi
$$

- Therefore, by item 4 above, \mathbf{F} is not the curl of another vector field.

