MATH 2443-008

Calculus IV

Orthogonal Curvilinear Coordinates in 3-Dimensions

1. Consider a coordinate system in \mathbb{R}^3 defined by

 $\mathbf{r}(u_1, u_2, u_3) = \langle x(u_1, u_2, u_3), y(u_1, u_2, u_3), z(u_1, u_2, u_3) \rangle$

Setting two of the coordinates u_i to be constant gives a parametric *coordinate curve* with the third coordinate as parameter. Since these coordinate curves are not usually straight lines, the coordinates are called *curvilinear*.

2. Taking partial derivatives gives tangent vectors

$$\frac{\partial \mathbf{r}}{\partial u_i} = \left\langle \frac{\partial x}{\partial u_i}, \frac{\partial y}{\partial u_i}, \frac{\partial z}{\partial u_i} \right\rangle$$

to the coordinate curves. The coordinates are said to be *orthogonal* if these three tangent vectors are mutually perpendicular (orthogonal) at each point of space

$$\frac{\partial \mathbf{r}}{\partial u_i} \cdot \frac{\partial \mathbf{r}}{\partial u_j} = 0 \text{ for } i \neq j$$

3. Unit basis vectors. One scales the tangent vectors to have length 1, to get a basis (or moving frame) of vectors at each point. Define the *scale factors* h_i by

$$h_i = \left| \frac{\partial \mathbf{r}}{\partial u_i} \right|$$

and define the unit vectors $\mathbf{\hat{u}}_i$ by

$$\mathbf{\hat{u}}_i = \frac{1}{h_i} \frac{\partial \mathbf{r}}{\partial u_i}$$

We usually order the basis vectors so that they form a right handed system: $\hat{\mathbf{u}}_1 \times \hat{\mathbf{u}}_2 = \hat{\mathbf{u}}_3$, $\hat{\mathbf{u}}_2 \times \hat{\mathbf{u}}_3 = \hat{\mathbf{u}}_1$, and $\hat{\mathbf{u}}_3 \times \hat{\mathbf{u}}_1 = \hat{\mathbf{u}}_2$.

4. Cylindrical Coordinates. Cylindrical coordinates are a example of an orthogonal curvilinear coordinate system.

$$\mathbf{r}(r,\theta,z) = \langle r\cos\theta, r\sin\theta, z \rangle$$

with tangent vectors, scale factors, and unit vectors given by

$$\frac{\partial \mathbf{r}}{\partial r} = \langle \cos \theta, \sin \theta, 0 \rangle \qquad \qquad h_1 = 1 \qquad \qquad \mathbf{\hat{r}} = \langle \cos \theta, \sin \theta, 0 \rangle$$
$$\frac{\partial \mathbf{r}}{\partial \theta} = \langle -r \sin \theta, r \cos \theta, 0 \rangle \qquad \qquad h_2 = r \qquad \qquad \mathbf{\hat{\theta}} = \langle -\sin \theta, \cos \theta, 0 \rangle$$
$$\frac{\partial \mathbf{r}}{\partial z} = \langle 0, 0, 1 \rangle \qquad \qquad h_3 = 1 \qquad \qquad \mathbf{\hat{z}} = \langle 0, 0, 1 \rangle$$

You should verify that these are mutually orthogonal unit vectors.

5. **Spherical Coordinates.** Spherical coordinates are another example of an orthogonal curvilinear coordinate system.

$$\mathbf{r}(\rho,\phi,\theta) = \langle \rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi \rangle$$

with tangent vectors, scale factors, and unit vectors given by

$$\frac{\partial \mathbf{r}}{\partial \rho} = \langle \sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi \rangle \qquad h_1 = 1 \qquad \hat{\rho} = \langle \sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi \rangle$$
$$\frac{\partial \mathbf{r}}{\partial \phi} = \langle \rho \cos \phi \cos \theta, \rho \cos \phi \sin \theta, -\rho \sin \phi \rangle \qquad h_2 = \rho \qquad \hat{\phi} = \langle \cos \phi \cos \theta, \cos \phi \sin \theta, -\sin \phi \rangle$$
$$\frac{\partial \mathbf{r}}{\partial \theta} = \langle -\rho \sin \phi \sin \theta, \rho \sin \phi \cos \theta, 0 \rangle \qquad h_3 = \rho \sin \phi \qquad \hat{\theta} = \langle -\sin \theta, \cos \theta, 0 \rangle$$

You should verify that these are mutually orthogonal unit vectors.

6. Gradient in Curvilinear Coordinates. Let f be a scalar field (function). Recall that the components of a vector with respect to the usual basis $\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}$ are simply the projections of the vector onto the $\hat{\mathbf{i}}, \hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$ directions. Likewise, we compute the $\hat{\mathbf{u}}_i$ -components of ∇f by projecting the vector ∇f onto $\hat{\mathbf{u}}_i$. This is

$$\nabla f \cdot \hat{\mathbf{u}}_i = \frac{1}{h_i} \frac{\partial f}{\partial x} \frac{\partial x}{\partial u_i} + \frac{1}{h_i} \frac{\partial f}{\partial y} \frac{\partial y}{\partial u_i} + \frac{1}{h_i} \frac{\partial f}{\partial z} \frac{\partial z}{\partial u_i} = \frac{1}{h_i} \frac{\partial f}{\partial u_i}$$

The first equality comes from the definition of ∇f and $\hat{\mathbf{u}}_i$, and the second inequality is just the chain rule.

Thus, we get the following formula for ∇f

$$\nabla f = \frac{1}{h_1} \frac{\partial f}{\partial u_1} \hat{\mathbf{u}}_1 + \frac{1}{h_2} \frac{\partial f}{\partial u_2} \hat{\mathbf{u}}_2 + \frac{1}{h_3} \frac{\partial f}{\partial u_3} \hat{\mathbf{u}}_3 \tag{1}$$

In cylindrical coordinates the gradient is

$$\nabla f = \frac{\partial f}{\partial r} \hat{\mathbf{r}} + \frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta} + \frac{\partial f}{\partial z} \hat{\mathbf{z}}$$

In spherical coordinates the gradient is

$$\nabla f = \frac{\partial f}{\partial \rho} \hat{\rho} + \frac{1}{\rho} \frac{\partial f}{\partial \phi} \hat{\phi} + \frac{1}{\rho \sin \phi} \frac{\partial f}{\partial \theta} \hat{\theta}$$

7. Gradient Expression for the Basis Vectors. Note that

$$\nabla u_i = \frac{1}{h_1} \frac{\partial u_i}{\partial u_1} \hat{\mathbf{u}}_1 + \frac{1}{h_2} \frac{\partial u_i}{\partial u_2} \hat{\mathbf{u}}_2 + \frac{1}{h_3} \frac{\partial u_i}{\partial u_3} \hat{\mathbf{u}}_3 = \frac{1}{h_i} \hat{\mathbf{u}}_i$$
(2)

The last equality holds because $\frac{\partial u_i}{\partial u_j}$ is equal to 0 when $j \neq i$, and is equal to 1 when j = i. Thus, we have another expression for the $\hat{\mathbf{u}}_i$ in terms of gradients

$$\hat{\mathbf{u}}_1 = h_1 \nabla u_1 \qquad \qquad \hat{\mathbf{u}}_2 = h_2 \nabla u_2 \qquad \qquad \hat{\mathbf{u}}_3 = h_3 \nabla u_3 \qquad \qquad (3)$$

This should make intuitive sense to you. Recall that ∇u_1 at a point P is normal to the level surface $u_1 = C$, a constant. The coordinate curves for u_2 and for u_3 through the point P by definition will keep u_1 fixed, and so they lie in the level surface $u_1 = C$. Therefore the normal vector ∇u_1 at P is perpendicular to the (scaled) tangent vectors $\hat{\mathbf{u}}_2$ and $\hat{\mathbf{u}}_3$ at P. So ∇u_1 is a multiple of $\hat{\mathbf{u}}_1$. Equation (2) tells us the precise multiple. Likewise for ∇u_2 and ∇u_3 . 8. The Divergence in Curvilinear Coordinates. Let \mathbf{F} be a vector field with coordinate functions F_i with respect to the unit vectors $\hat{\mathbf{u}}_i$. That is

$$\mathbf{F} = F_1 \hat{\mathbf{u}}_1 + F_2 \hat{\mathbf{u}}_2 + F_3 \hat{\mathbf{u}}_3$$

where the F_i are functions of (u_1, u_2, u_3) .

We compute the divergence $\nabla \cdot \mathbf{F}$ using properties of the differential operator ∇ . First ∇ satisfies a sum rule, and so it suffices to determine each $\nabla \cdot (F_i \hat{\mathbf{u}}_i)$ individually. Furthermore, the product rule for $\nabla \cdot$ gives

$$\nabla \cdot (F_i \hat{\mathbf{u}}_i) = (\nabla F_i) \cdot \hat{\mathbf{u}}_i + F_i (\nabla \cdot \hat{\mathbf{u}}_i)$$
(4)

The first term on the right hand side of equation (4) is easy to compute now that we know an expression (from equation (1)) for the gradient. It is just

$$(\nabla F_i) \cdot \hat{\mathbf{u}}_i = \frac{1}{h_i} \frac{\partial F_i}{\partial u_i}$$
(5)

The second term on the right hand side of equation (4) takes a little more thought. For concreteness, we compute $F_1(\nabla \cdot \hat{\mathbf{u}}_1)$. The other cases (i = 2, 3) are handled similarly.

$$F_{1}(\nabla \cdot \hat{\mathbf{u}}_{1}) = F_{1}\nabla \cdot (\hat{\mathbf{u}}_{2} \times \hat{\mathbf{u}}_{3})$$

$$= F_{1}\nabla \cdot (h_{2}\nabla u_{2} \times h_{3}\nabla u_{3})$$

$$= F_{1}\nabla \cdot (h_{2}h_{3}\nabla u_{2} \times \nabla u_{3})$$

$$= F_{1}\nabla (h_{2}h_{3}) \cdot (\nabla u_{2} \times \nabla u_{3}) + F_{1}h_{2}h_{3}\nabla \cdot (\nabla u_{2} \times \nabla u_{3})$$

$$= F_{1}\nabla (h_{2}h_{3}) \cdot \frac{\hat{\mathbf{u}}_{2} \times \hat{\mathbf{u}}_{3}}{h_{2}h_{3}} + 0$$

$$= F_{1}\nabla (h_{2}h_{3}) \cdot \frac{\hat{\mathbf{u}}_{1}}{h_{2}h_{3}}$$

$$= F_{1}\frac{1}{h_{1}}\frac{\partial (h_{2}h_{3})}{\partial u_{1}}\frac{1}{h_{2}h_{3}}$$

$$= \frac{F_{1}}{h_{1}h_{2}h_{3}}\frac{\partial (h_{2}h_{3})}{\partial u_{1}}$$

The first equality is because the $\hat{\mathbf{u}}_i$ form a right handed system. The second equality holds by equation (3). The third equality is just pulling scalars out of a cross product. The fourth equality use the product rule for the operator $\nabla \cdot$. The fifth equality is because $\nabla \cdot (\nabla f \times \nabla g)$ vanishes (see below), and uses equation (3) to convert the first term back to $\hat{\mathbf{u}}_i$ vectors. The second to last equality uses equation (1) to compute the first component of $\nabla(h_2h_3)$.

[Aside: We see that $\nabla \cdot (\nabla f \times \nabla g)$ vanishes because of a vector cross product identity and the fact that $\nabla \times \nabla = 0$. Specifically,

$$\nabla \cdot (\nabla f \times \nabla g) = \nabla g \cdot (\nabla \times \nabla f) - \nabla f \cdot (\nabla \times \nabla g) = 0]$$

So, in the case i = 1, equation (4) becomes

$$\nabla \cdot (F_1 \hat{\mathbf{u}}_1) = (\nabla F_1) \cdot \hat{\mathbf{u}}_1 + F_1 (\nabla \cdot \hat{\mathbf{u}}_1)$$
$$= \frac{1}{h_1} \frac{\partial F_1}{\partial u_1} + \frac{F_1}{h_1 h_2 h_3} \frac{\partial (h_2 h_3)}{\partial u_1}$$
$$= \frac{1}{h_1 h_2 h_3} \frac{\partial (h_2 h_3 F_1)}{\partial u_1}$$

We obtain similar expressions in the case i = 2, 3. Combining all three gives the following expression for the divergence

$$\nabla \cdot \mathbf{F} = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial (h_2 h_3 F_1)}{\partial u_1} + \frac{\partial (h_1 h_3 F_2)}{\partial u_2} + \frac{\partial (h_1 h_2 F_3)}{\partial u_3} \right]$$
(6)

In cylindrical coordinates the divergence of $\mathbf{F} = F_1 \hat{\mathbf{r}} + F_2 \hat{\theta} + F_3 \hat{\mathbf{z}}$ is

$$\nabla \cdot \mathbf{F} = \frac{1}{r} \left[\frac{\partial (rF_1)}{\partial r} + \frac{\partial (F_2)}{\partial \theta} + \frac{\partial (rF_3)}{\partial z} \right]$$

In spherical coordinates the divergence of $\mathbf{F} = F_1 \hat{\rho} + F_2 \hat{\phi} + F_3 \hat{\theta}$ is

$$\nabla \cdot \mathbf{F} = \frac{1}{\rho^2 \sin \phi} \left[\frac{\partial (\rho^2 \sin \phi F_1)}{\partial \rho} + \frac{\partial (\rho \sin \phi F_2)}{\partial \phi} + \frac{\partial (\rho F_3)}{\partial \theta} \right]$$

9. The Laplacian in Curvilinear Coordinates. Combining the results from the two previous sections, we get an expression for the Laplacian $(\Delta = \nabla^2)$.

$$\begin{aligned} \Delta f &= \nabla^2 f = \nabla \cdot \nabla f \\ &= \nabla \cdot \left(\frac{1}{h_1} \frac{\partial f}{\partial u_1} \hat{\mathbf{u}}_1 + \frac{1}{h_2} \frac{\partial f}{\partial u_2} \hat{\mathbf{u}}_2 + \frac{1}{h_3} \frac{\partial f}{\partial u_3} \hat{\mathbf{u}}_3 \right) \\ &= \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial u_1} \left(\frac{h_2 h_3}{h_1} \frac{\partial f}{\partial u_1} \right) + \frac{\partial}{\partial u_2} \left(\frac{h_1 h_3}{h_2} \frac{\partial f}{\partial u_2} \right) + \frac{\partial}{\partial u_3} \left(\frac{h_1 h_2}{h_3} \frac{\partial f}{\partial u_3} \right) \right] \end{aligned}$$

In cylindrical coordinates the Laplacian is

$$\Delta f = \frac{1}{r} \left[\frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{\partial}{\partial \theta} \left(\frac{1}{r} \frac{\partial f}{\partial \theta} \right) + \frac{\partial}{\partial z} \left(r \frac{\partial f}{\partial z} \right) \right]$$

In spherical coordinates the Laplacian is

$$\Delta f = \frac{1}{\rho^2 \sin \phi} \left[\frac{\partial}{\partial \rho} \left(\rho^2 \sin \phi \frac{\partial f}{\partial \rho} \right) + \frac{\partial}{\partial \phi} \left(\sin \phi \frac{\partial f}{\partial \phi} \right) + \frac{\partial}{\partial \theta} \left(\frac{1}{\sin \phi} \frac{\partial f}{\partial \theta} \right) \right]$$

10. The Curl in Curvilinear Coordinates. Let \mathbf{F} be a vector field with coordinate functions F_i with respect to the unit vectors $\hat{\mathbf{u}}_i$. That is

$$\mathbf{F} = F_1 \hat{\mathbf{u}}_1 + F_2 \hat{\mathbf{u}}_2 + F_3 \hat{\mathbf{u}}_3$$

where the F_i are functions of (u_1, u_2, u_3) .

We compute the curl $\nabla \times \mathbf{F}$ using properties of the differential operator $\nabla \times$. First $\nabla \times$ satisfies a sum rule, and so it suffices to determine each $\nabla \times (F_i \hat{\mathbf{u}}_i)$ individually. Furthermore, the product rule for $\nabla \times$ gives

$$\nabla \times (F_i \hat{\mathbf{u}}_i) = (\nabla F_i) \times \hat{\mathbf{u}}_i + F_i (\nabla \times \hat{\mathbf{u}}_i)$$
(7)

For concreteness, we'll work out the right side of equation (7) in the case i = 1. The cases i = 2, 3 are similar.

Using equation (1) we can write out the first term on the right side of equation (7) as

$$(\nabla F_1) \times \hat{\mathbf{u}}_1 = \left[\frac{1}{h_1} \frac{\partial F_1}{\partial u_1} \hat{\mathbf{u}}_1 + \frac{1}{h_2} \frac{\partial F_1}{\partial u_2} \hat{\mathbf{u}}_2 + \frac{1}{h_3} \frac{\partial F_1}{\partial u_3} \hat{\mathbf{u}}_3 \right] \times \hat{\mathbf{u}}_1$$
$$= \frac{1}{h_3} \frac{\partial F_1}{\partial u_3} \hat{\mathbf{u}}_2 - \frac{1}{h_2} \frac{\partial F_1}{\partial u_2} \hat{\mathbf{u}}_3$$

The second equality just uses the fact that the $\hat{\mathbf{u}}_i$ form a right handed system.

We can use the gradient version of the $\hat{\mathbf{u}}_i$ (from equation (3)) to write the second term on the right side of equation (7) as

$$F_{1}(\nabla \times \hat{\mathbf{u}}_{1}) = F_{1}(\nabla \times (h_{1}\nabla u_{1}))$$

$$= F_{1}\nabla(h_{1}) \times \nabla(u_{1}) + F_{1}h_{1}(\nabla \times \nabla u_{1})$$

$$= F_{1}\left[\frac{1}{h_{1}}\frac{\partial h_{1}}{\partial u_{1}}\hat{\mathbf{u}}_{1} + \frac{1}{h_{2}}\frac{\partial h_{1}}{\partial u_{2}}\hat{\mathbf{u}}_{2} + \frac{1}{h_{3}}\frac{\partial h_{1}}{\partial u_{3}}\hat{\mathbf{u}}_{3}\right] \times \nabla u_{1} + \mathbf{0}$$

$$= F_{1}\left[\frac{1}{h_{1}}\frac{\partial h_{1}}{\partial u_{1}}\hat{\mathbf{u}}_{1} + \frac{1}{h_{2}}\frac{\partial h_{1}}{\partial u_{2}}\hat{\mathbf{u}}_{2} + \frac{1}{h_{3}}\frac{\partial h_{1}}{\partial u_{3}}\hat{\mathbf{u}}_{3}\right] \times \frac{\hat{\mathbf{u}}_{1}}{h_{1}}$$

$$= \frac{F_{1}}{h_{1}h_{3}}\frac{\partial h_{1}}{\partial u_{3}}\hat{\mathbf{u}}_{2} - \frac{F_{1}}{h_{1}h_{2}}\frac{\partial h_{1}}{\partial u_{2}}\hat{\mathbf{u}}_{3}$$

Combining the results of the past two paragraphs we get that equation (7) becomes

$$\nabla \times (F_1 \hat{\mathbf{u}}_1) = \left(\frac{1}{h_3} \frac{\partial F_1}{\partial u_3} + \frac{F_1}{h_1 h_3} \frac{\partial h_1}{\partial u_3}\right) \hat{\mathbf{u}}_2 - \left(\frac{1}{h_2} \frac{\partial F_1}{\partial u_2} + \frac{F_1}{h_1 h_2} \frac{\partial h_1}{\partial u_2}\right) \hat{\mathbf{u}}_3$$
$$= \left(\frac{1}{h_1 h_3} \frac{\partial (h_1 F_1)}{\partial u_3}\right) \hat{\mathbf{u}}_2 - \left(\frac{1}{h_1 h_2} \frac{\partial (h_1 F_1)}{\partial u_2}\right) \hat{\mathbf{u}}_3$$

There are similar expressions for the case i = 2, 3. We recognize sum of all these as the output of a 3×3 -determinant, and so obtain the the following expression for the curl

$$\nabla \times \mathbf{F} = \frac{1}{h_1 h_2 h_3} \begin{vmatrix} h_1 \hat{\mathbf{u}}_1 & h_2 \hat{\mathbf{u}}_2 & h_3 \hat{\mathbf{u}}_3 \\ \frac{\partial}{\partial u_1} & \frac{\partial}{\partial u_2} & \frac{\partial}{\partial u_3} \\ h_1 F_1 & h_2 F_2 & h_3 F_3 \end{vmatrix}$$
(8)

In cylindrical coordinates the Curl of $\mathbf{F} = F_1 \hat{\mathbf{r}} + F_2 \hat{\theta} + F_3 \hat{\mathbf{z}}$ is

$$\nabla \times \mathbf{F} = \frac{1}{r} \begin{vmatrix} \hat{\mathbf{r}} & r\hat{\theta} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\ F_1 & rF_2 & F_3 \end{vmatrix}$$

In spherical coordinates the Curl of $\mathbf{F} = F_1 \hat{\rho} + F_2 \hat{\phi} + F_3 \hat{\theta}$ is

$$\nabla \times \mathbf{F} = \frac{1}{\rho^2 \sin \phi} \begin{vmatrix} \hat{\rho} & \rho \hat{\phi} & \rho \sin \phi \hat{\theta} \\ \frac{\partial}{\partial \rho} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial \theta} \\ F_1 & \rho F_2 & \rho \sin \phi F_3 \end{vmatrix}$$