1. Consider a coordinate system in \mathbb{R}^{3} defined by

$$
\mathbf{r}\left(u_{1}, u_{2}, u_{3}\right)=\left\langle x\left(u_{1}, u_{2}, u_{3}\right), y\left(u_{1}, u_{2}, u_{3}\right), z\left(u_{1}, u_{2}, u_{3}\right)\right\rangle
$$

Setting two of the coordinates u_{i} to be constant gives a parametric coordinate curve with the third coordinate as parameter. Since these coordinate curves are not usually straight lines, the coordinates are called curvilinear.
2. Taking partial derivatives gives tangent vectors

$$
\frac{\partial \mathbf{r}}{\partial u_{i}}=\left\langle\frac{\partial x}{\partial u_{i}}, \frac{\partial y}{\partial u_{i}}, \frac{\partial z}{\partial u_{i}}\right\rangle
$$

to the coordinate curves. The coordinates are said to be orthogonal if these three tangent vectors are mutually perpendicular (orthogonal) at each point of space

$$
\frac{\partial \mathbf{r}}{\partial u_{i}} \cdot \frac{\partial \mathbf{r}}{\partial u_{j}}=0 \text { for } i \neq j
$$

3. Unit basis vectors. One scales the tangent vectors to have length 1, to get a basis (or moving frame) of vectors at each point. Define the scale factors h_{i} by

$$
h_{i}=\left|\frac{\partial \mathbf{r}}{\partial u_{i}}\right|
$$

and define the unit vectors $\hat{\mathbf{u}}_{i}$ by

$$
\hat{\mathbf{u}}_{i}=\frac{1}{h_{i}} \frac{\partial \mathbf{r}}{\partial u_{i}}
$$

We usually order the basis vectors so that they form a right handed system: $\hat{\mathbf{u}}_{1} \times \hat{\mathbf{u}}_{2}=\hat{\mathbf{u}}_{3}$, $\hat{\mathbf{u}}_{2} \times \hat{\mathbf{u}}_{3}=\hat{\mathbf{u}}_{1}$, and $\hat{\mathbf{u}}_{3} \times \hat{\mathbf{u}}_{1}=\hat{\mathbf{u}}_{2}$.
4. Cylindrical Coordinates. Cylindrical coordinates are a example of an orthogonal curvilinear coordinate system.

$$
\mathbf{r}(r, \theta, z)=\langle r \cos \theta, r \sin \theta, z\rangle
$$

with tangent vectors, scale factors, and unit vectors given by

$$
\begin{array}{lll}
\frac{\partial \mathbf{r}}{\partial r}=\langle\cos \theta, \sin \theta, 0\rangle & h_{1}=1 & \hat{\mathbf{r}}=\langle\cos \theta, \sin \theta, 0\rangle \\
\frac{\partial \mathbf{r}}{\partial \theta}=\langle-r \sin \theta, r \cos \theta, 0\rangle & h_{2}=r & \hat{\theta}=\langle-\sin \theta, \cos \theta, 0\rangle \\
\frac{\partial \mathbf{r}}{\partial z}=\langle 0,0,1\rangle & h_{3}=1 & \hat{\mathbf{z}}=\langle 0,0,1\rangle
\end{array}
$$

You should verify that these are mutually orthogonal unit vectors.
5. Spherical Coordinates. Spherical coordinates are another example of an orthogonal curvilinear coordinate system.

$$
\mathbf{r}(\rho, \phi, \theta)=\langle\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi\rangle
$$

with tangent vectors, scale factors, and unit vectors given by

$$
\begin{array}{lll}
\frac{\partial \mathbf{r}}{\partial \rho}=\langle\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi\rangle & h_{1}=1 & \hat{\rho}=\langle\sin \phi \cos \theta, \sin \phi \sin \theta, \cos \phi\rangle \\
\frac{\partial \mathbf{r}}{\partial \phi}=\langle\rho \cos \phi \cos \theta, \rho \cos \phi \sin \theta,-\rho \sin \phi\rangle & h_{2}=\rho & \hat{\phi}=\langle\cos \phi \cos \theta, \cos \phi \sin \theta,-\sin \phi\rangle \\
\frac{\partial \mathbf{r}}{\partial \theta}=\langle-\rho \sin \phi \sin \theta, \rho \sin \phi \cos \theta, 0\rangle & h_{3}=\rho \sin \phi & \hat{\theta}=\langle-\sin \theta, \cos \theta, 0\rangle
\end{array}
$$

You should verify that these are mutually orthogonal unit vectors.
6. Gradient in Curvilinear Coordinates. Let f be a scalar field (function). Recall that the components of a vector with respect to the usual basis $\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}$ are simply the projections of the vector onto the $\hat{\mathbf{i}}, \hat{\mathbf{j}}$ and $\hat{\mathbf{k}}$ directions. Likewise, we compute the $\hat{\mathbf{u}}_{i}$-components of ∇f by projecting the vector ∇f onto $\hat{\mathbf{u}}_{i}$. This is

$$
\nabla f \cdot \hat{\mathbf{u}}_{i}=\frac{1}{h_{i}} \frac{\partial f}{\partial x} \frac{\partial x}{\partial u_{i}}+\frac{1}{h_{i}} \frac{\partial f}{\partial y} \frac{\partial y}{\partial u_{i}}+\frac{1}{h_{i}} \frac{\partial f}{\partial z} \frac{\partial z}{\partial u_{i}}=\frac{1}{h_{i}} \frac{\partial f}{\partial u_{i}}
$$

The first equality comes from the definition of ∇f and $\hat{\mathbf{u}}_{i}$, and the second inequality is just the chain rule.
Thus, we get the following formula for ∇f

$$
\begin{equation*}
\nabla f=\frac{1}{h_{1}} \frac{\partial f}{\partial u_{1}} \hat{\mathbf{u}}_{1}+\frac{1}{h_{2}} \frac{\partial f}{\partial u_{2}} \hat{\mathbf{u}}_{2}+\frac{1}{h_{3}} \frac{\partial f}{\partial u_{3}} \hat{\mathbf{u}}_{3} \tag{1}
\end{equation*}
$$

In cylindrical coordinates the gradient is

$$
\nabla f=\frac{\partial f}{\partial r} \hat{\mathbf{r}}+\frac{1}{r} \frac{\partial f}{\partial \theta} \hat{\theta}+\frac{\partial f}{\partial z} \hat{\mathbf{z}}
$$

In spherical coordinates the gradient is

$$
\nabla f=\frac{\partial f}{\partial \rho} \hat{\rho}+\frac{1}{\rho} \frac{\partial f}{\partial \phi} \hat{\phi}+\frac{1}{\rho \sin \phi} \frac{\partial f}{\partial \theta} \hat{\theta}
$$

7. Gradient Expression for the Basis Vectors. Note that

$$
\begin{equation*}
\nabla u_{i}=\frac{1}{h_{1}} \frac{\partial u_{i}}{\partial u_{1}} \hat{\mathbf{u}}_{1}+\frac{1}{h_{2}} \frac{\partial u_{i}}{\partial u_{2}} \hat{\mathbf{u}}_{2}+\frac{1}{h_{3}} \frac{\partial u_{i}}{\partial u_{3}} \hat{\mathbf{u}}_{3}=\frac{1}{h_{i}} \hat{\mathbf{u}}_{i} \tag{2}
\end{equation*}
$$

The last equality holds because $\frac{\partial u_{i}}{\partial u_{j}}$ is equal to 0 when $j \neq i$, and is equal to 1 when $j=i$.
Thus, we have another expression for the $\hat{\mathbf{u}}_{i}$ in terms of gradients

$$
\begin{array}{lll}
\hat{\mathbf{u}}_{1}=h_{1} \nabla u_{1} & \hat{\mathbf{u}}_{2}=h_{2} \nabla u_{2} \quad \hat{\mathbf{u}}_{3}=h_{3} \nabla u_{3} \tag{3}
\end{array}
$$

This should make intuitive sense to you. Recall that ∇u_{1} at a point P is normal to the level surface $u_{1}=C$, a constant. The coordinate curves for u_{2} and for u_{3} through the point P by definition will keep u_{1} fixed, and so they lie in the level surface $u_{1}=C$. Therefore the normal vector ∇u_{1} at P is perpendicular to the (scaled) tangent vectors $\hat{\mathbf{u}}_{2}$ and $\hat{\mathbf{u}}_{3}$ at P. So ∇u_{1} is a multiple of $\hat{\mathbf{u}}_{1}$. Equation (2) tells us the precise multiple. Likewise for ∇u_{2} and ∇u_{3}.
8. The Divergence in Curvilinear Coordinates. Let \mathbf{F} be a vector field with coordinate functions F_{i} with respect to the unit vectors $\hat{\mathbf{u}}_{i}$. That is

$$
\mathbf{F}=F_{1} \hat{\mathbf{u}}_{1}+F_{2} \hat{\mathbf{u}}_{2}+F_{3} \hat{\mathbf{u}}_{3}
$$

where the F_{i} are functions of $\left(u_{1}, u_{2}, u_{3}\right)$.
We compute the divergence $\nabla \cdot \mathbf{F}$ using properties of the differential operator ∇. First ∇ satisfies a sum rule, and so it suffices to determine each $\nabla \cdot\left(F_{i} \hat{\mathbf{u}}_{i}\right)$ individually. Furthermore, the product rule for ∇. gives

$$
\begin{equation*}
\nabla \cdot\left(F_{i} \hat{\mathbf{u}}_{i}\right)=\left(\nabla F_{i}\right) \cdot \hat{\mathbf{u}}_{i}+F_{i}\left(\nabla \cdot \hat{\mathbf{u}}_{i}\right) \tag{4}
\end{equation*}
$$

The first term on the right hand side of equation (4) is easy to compute now that we know an expression (from equation (1)) for the gradient. It is just

$$
\begin{equation*}
\left(\nabla F_{i}\right) \cdot \hat{\mathbf{u}}_{i}=\frac{1}{h_{i}} \frac{\partial F_{i}}{\partial u_{i}} \tag{5}
\end{equation*}
$$

The second term on the right hand side of equation (4) takes a little more thought. For concreteness, we compute $F_{1}\left(\nabla \cdot \hat{\mathbf{u}}_{1}\right)$. The other cases $(i=2,3)$ are handled similarly.

$$
\begin{aligned}
F_{1}\left(\nabla \cdot \hat{\mathbf{u}}_{1}\right) & =F_{1} \nabla \cdot\left(\hat{\mathbf{u}}_{2} \times \hat{\mathbf{u}}_{3}\right) \\
& =F_{1} \nabla \cdot\left(h_{2} \nabla u_{2} \times h_{3} \nabla u_{3}\right) \\
& =F_{1} \nabla \cdot\left(h_{2} h_{3} \nabla u_{2} \times \nabla u_{3}\right) \\
& =F_{1} \nabla\left(h_{2} h_{3}\right) \cdot\left(\nabla u_{2} \times \nabla u_{3}\right)+F_{1} h_{2} h_{3} \nabla \cdot\left(\nabla u_{2} \times \nabla u_{3}\right) \\
& =F_{1} \nabla\left(h_{2} h_{3}\right) \cdot \frac{\hat{\mathbf{u}}_{2} \times \hat{\mathbf{u}}_{3}}{h_{2} h_{3}}+0 \\
& =F_{1} \nabla\left(h_{2} h_{3}\right) \cdot \frac{\hat{\mathbf{u}}_{1}}{h_{2} h_{3}} \\
& =F_{1} \frac{1}{h_{1}} \frac{\partial\left(h_{2} h_{3}\right)}{\partial u_{1}} \frac{1}{h_{2} h_{3}} \\
& =\frac{F_{1}}{h_{1} h_{2} h_{3}} \frac{\partial\left(h_{2} h_{3}\right)}{\partial u_{1}}
\end{aligned}
$$

The first equality is because the $\hat{\mathbf{u}}_{i}$ form a right handed system. The second equality holds by equation (3). The third equality is just pulling scalars out of a cross product. The fourth equality use the product rule for the operator $\nabla \cdot$. The fifth equality is because $\nabla \cdot(\nabla f \times \nabla g)$ vanishes (see below), and uses equation (3) to convert the first term back to $\hat{\mathbf{u}}_{i}$ vectors. The second to last equality uses equation (1) to compute the first component of $\nabla\left(h_{2} h_{3}\right)$.
[Aside: We see that $\nabla \cdot(\nabla f \times \nabla g)$ vanishes because of a vector cross product identity and the fact that $\nabla \times \nabla=0$. Specifically,

$$
\nabla \cdot(\nabla f \times \nabla g)=\nabla g \cdot(\nabla \times \nabla f)-\nabla f \cdot(\nabla \times \nabla g)=0]
$$

So, in the case $i=1$, equation (4) becomes

$$
\begin{aligned}
\nabla \cdot\left(F_{1} \hat{\mathbf{u}}_{1}\right) & =\left(\nabla F_{1}\right) \cdot \hat{\mathbf{u}}_{1}+F_{1}\left(\nabla \cdot \hat{\mathbf{u}}_{1}\right) \\
& =\frac{1}{h_{1}} \frac{\partial F_{1}}{\partial u_{1}}+\frac{F_{1}}{h_{1} h_{2} h_{3}} \frac{\partial\left(h_{2} h_{3}\right)}{\partial u_{1}} \\
& =\frac{1}{h_{1} h_{2} h_{3}} \frac{\partial\left(h_{2} h_{3} F_{1}\right)}{\partial u_{1}}
\end{aligned}
$$

We obtain similar expressions in the case $i=2,3$. Combining all three gives the following expression for the divergence

$$
\begin{equation*}
\nabla \cdot \mathbf{F}=\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial\left(h_{2} h_{3} F_{1}\right)}{\partial u_{1}}+\frac{\partial\left(h_{1} h_{3} F_{2}\right)}{\partial u_{2}}+\frac{\partial\left(h_{1} h_{2} F_{3}\right)}{\partial u_{3}}\right] \tag{6}
\end{equation*}
$$

In cylindrical coordinates the divergence of $\mathbf{F}=F_{1} \hat{\mathbf{r}}+F_{2} \hat{\theta}+F_{3} \hat{\mathbf{z}}$ is

$$
\nabla \cdot \mathbf{F}=\frac{1}{r}\left[\frac{\partial\left(r F_{1}\right)}{\partial r}+\frac{\partial\left(F_{2}\right)}{\partial \theta}+\frac{\partial\left(r F_{3}\right)}{\partial z}\right]
$$

In spherical coordinates the divergence of $\mathbf{F}=F_{1} \hat{\rho}+F_{2} \hat{\phi}+F_{3} \hat{\theta}$ is

$$
\nabla \cdot \mathbf{F}=\frac{1}{\rho^{2} \sin \phi}\left[\frac{\partial\left(\rho^{2} \sin \phi F_{1}\right)}{\partial \rho}+\frac{\partial\left(\rho \sin \phi F_{2}\right)}{\partial \phi}+\frac{\partial\left(\rho F_{3}\right)}{\partial \theta}\right]
$$

9. The Laplacian in Curvilinear Coordinates. Combining the results from the two previous sections, we get an expression for the Laplacian $\left(\Delta=\nabla^{2}\right)$.

$$
\begin{aligned}
\Delta f=\nabla^{2} f & =\nabla \cdot \nabla f \\
& =\nabla \cdot\left(\frac{1}{h_{1}} \frac{\partial f}{\partial u_{1}} \hat{\mathbf{u}}_{1}+\frac{1}{h_{2}} \frac{\partial f}{\partial u_{2}} \hat{\mathbf{u}}_{2}+\frac{1}{h_{3}} \frac{\partial f}{\partial u_{3}} \hat{\mathbf{u}}_{3}\right) \\
& =\frac{1}{h_{1} h_{2} h_{3}}\left[\frac{\partial}{\partial u_{1}}\left(\frac{h_{2} h_{3}}{h_{1}} \frac{\partial f}{\partial u_{1}}\right)+\frac{\partial}{\partial u_{2}}\left(\frac{h_{1} h_{3}}{h_{2}} \frac{\partial f}{\partial u_{2}}\right)+\frac{\partial}{\partial u_{3}}\left(\frac{h_{1} h_{2}}{h_{3}} \frac{\partial f}{\partial u_{3}}\right)\right]
\end{aligned}
$$

In cylindrical coordinates the Laplacian is

$$
\Delta f=\frac{1}{r}\left[\frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right)+\frac{\partial}{\partial \theta}\left(\frac{1}{r} \frac{\partial f}{\partial \theta}\right)+\frac{\partial}{\partial z}\left(r \frac{\partial f}{\partial z}\right)\right]
$$

In spherical coordinates the Laplacian is

$$
\Delta f=\frac{1}{\rho^{2} \sin \phi}\left[\frac{\partial}{\partial \rho}\left(\rho^{2} \sin \phi \frac{\partial f}{\partial \rho}\right)+\frac{\partial}{\partial \phi}\left(\sin \phi \frac{\partial f}{\partial \phi}\right)+\frac{\partial}{\partial \theta}\left(\frac{1}{\sin \phi} \frac{\partial f}{\partial \theta}\right)\right]
$$

10. The Curl in Curvilinear Coordinates. Let \mathbf{F} be a vector field with coordinate functions F_{i} with respect to the unit vectors $\hat{\mathbf{u}}_{i}$. That is

$$
\mathbf{F}=F_{1} \hat{\mathbf{u}}_{1}+F_{2} \hat{\mathbf{u}}_{2}+F_{3} \hat{\mathbf{u}}_{3}
$$

where the F_{i} are functions of $\left(u_{1}, u_{2}, u_{3}\right)$.
We compute the curl $\nabla \times \mathbf{F}$ using properties of the differential operator $\nabla \times$. First $\nabla \times$ satisfies a sum rule, and so it suffices to determine each $\nabla \times\left(F_{i} \hat{\mathbf{u}}_{i}\right)$ individually. Furthermore, the product rule for $\nabla \times$ gives

$$
\begin{equation*}
\nabla \times\left(F_{i} \hat{\mathbf{u}}_{i}\right)=\left(\nabla F_{i}\right) \times \hat{\mathbf{u}}_{i}+F_{i}\left(\nabla \times \hat{\mathbf{u}}_{i}\right) \tag{7}
\end{equation*}
$$

For concreteness, we'll work out the right side of equation (7) in the case $i=1$. The cases $i=2,3$ are similar.

Using equation (1) we can write out the first term on the right side of equation (7) as

$$
\begin{aligned}
\left(\nabla F_{1}\right) \times \hat{\mathbf{u}}_{1} & =\left[\frac{1}{h_{1}} \frac{\partial F_{1}}{\partial u_{1}} \hat{\mathbf{u}}_{1}+\frac{1}{h_{2}} \frac{\partial F_{1}}{\partial u_{2}} \hat{\mathbf{u}}_{2}+\frac{1}{h_{3}} \frac{\partial F_{1}}{\partial u_{3}} \hat{\mathbf{u}}_{3}\right] \times \hat{\mathbf{u}}_{1} \\
& =\frac{1}{h_{3}} \frac{\partial F_{1}}{\partial u_{3}} \hat{\mathbf{u}}_{2}-\frac{1}{h_{2}} \frac{\partial F_{1}}{\partial u_{2}} \hat{\mathbf{u}}_{3}
\end{aligned}
$$

The second equality just uses the fact that the $\hat{\mathbf{u}}_{i}$ form a right handed system.
We can use the gradient version of the $\hat{\mathbf{u}}_{i}$ (from equation (3)) to write the second term on the right side of equation (7) as

$$
\begin{aligned}
F_{1}\left(\nabla \times \hat{\mathbf{u}}_{1}\right) & =F_{1}\left(\nabla \times\left(h_{1} \nabla u_{1}\right)\right) \\
& =F_{1} \nabla\left(h_{1}\right) \times \nabla\left(u_{1}\right)+F_{1} h_{1}\left(\nabla \times \nabla u_{1}\right) \\
& =F_{1}\left[\frac{1}{h_{1}} \frac{\partial h_{1}}{\partial u_{1}} \hat{\mathbf{u}}_{1}+\frac{1}{h_{2}} \frac{\partial h_{1}}{\partial u_{2}} \hat{\mathbf{u}}_{2}+\frac{1}{h_{3}} \frac{\partial h_{1}}{\partial u_{3}} \hat{\mathbf{u}}_{3}\right] \times \nabla u_{1}+\mathbf{0} \\
& =F_{1}\left[\frac{1}{h_{1}} \frac{\partial h_{1}}{\partial u_{1}} \hat{\mathbf{u}}_{1}+\frac{1}{h_{2}} \frac{\partial h_{1}}{\partial u_{2}} \hat{\mathbf{u}}_{2}+\frac{1}{h_{3}} \frac{\partial h_{1}}{\partial u_{3}} \hat{\mathbf{u}}_{3}\right] \times \frac{\hat{\mathbf{u}}_{1}}{h_{1}} \\
& =\frac{F_{1}}{h_{1} h_{3}} \frac{\partial h_{1}}{\partial u_{3}} \hat{\mathbf{u}}_{2}-\frac{F_{1}}{h_{1} h_{2}} \frac{\partial h_{1}}{\partial u_{2}} \hat{\mathbf{u}}_{3}
\end{aligned}
$$

Combining the results of the past two paragraphs we get that equation (7) becomes

$$
\begin{aligned}
\nabla \times\left(F_{1} \hat{\mathbf{u}}_{1}\right) & =\left(\frac{1}{h_{3}} \frac{\partial F_{1}}{\partial u_{3}}+\frac{F_{1}}{h_{1} h_{3}} \frac{\partial h_{1}}{\partial u_{3}}\right) \hat{\mathbf{u}}_{2}-\left(\frac{1}{h_{2}} \frac{\partial F_{1}}{\partial u_{2}}+\frac{F_{1}}{h_{1} h_{2}} \frac{\partial h_{1}}{\partial u_{2}}\right) \hat{\mathbf{u}}_{3} \\
& =\left(\frac{1}{h_{1} h_{3}} \frac{\partial\left(h_{1} F_{1}\right)}{\partial u_{3}}\right) \hat{\mathbf{u}}_{2}-\left(\frac{1}{h_{1} h_{2}} \frac{\partial\left(h_{1} F_{1}\right)}{\partial u_{2}}\right) \hat{\mathbf{u}}_{3}
\end{aligned}
$$

There are similar expressions for the case $i=2,3$. We recognize sum of all these as the output of a 3×3-determinant, and so obtain the the following expression for the curl

$$
\nabla \times \mathbf{F}=\frac{1}{h_{1} h_{2} h_{3}}\left|\begin{array}{ccc}
h_{1} \hat{\mathbf{u}}_{1} & h_{2} \hat{\mathbf{u}}_{2} & h_{3} \hat{\mathbf{u}}_{3} \tag{8}\\
\frac{\partial}{\partial u_{1}} & \frac{\partial}{\partial u_{2}} & \frac{\partial}{\partial u_{3}} \\
h_{1} F_{1} & h_{2} F_{2} & h_{3} F_{3}
\end{array}\right|
$$

In cylindrical coordinates the Curl of $\mathbf{F}=F_{1} \hat{\mathbf{r}}+F_{2} \hat{\theta}+F_{3} \hat{\mathbf{z}}$ is

$$
\nabla \times \mathbf{F}=\frac{1}{r}\left|\begin{array}{ccc}
\hat{\mathbf{r}} & r \hat{\theta} & \hat{\mathbf{z}} \\
\frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial z} \\
F_{1} & r F_{2} & F_{3}
\end{array}\right|
$$

In spherical coordinates the Curl of $\mathbf{F}=F_{1} \hat{\rho}+F_{2} \hat{\phi}+F_{3} \hat{\theta}$ is

$$
\nabla \times \mathbf{F}=\frac{1}{\rho^{2} \sin \phi}\left|\begin{array}{ccc}
\hat{\rho} & \rho \hat{\phi} & \rho \sin \phi \hat{\theta} \\
\frac{\partial}{\partial \rho} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial \theta} \\
F_{1} & \rho F_{2} & \rho \sin \phi F_{3}
\end{array}\right|
$$

