
MATH 2443–008 Calculus IV Spring 2014
Orthogonal Curvilinear Coordinates in 3–Dimensions

1. Consider a coordinate system in R
3 defined by

r(u1, u2, u3) = 〈x(u1, u2, u3), y(u1, u2, u3), z(u1, u2, u3)〉

Setting two of the coordinates ui to be constant gives a parametric coordinate curve with the
third coordinate as parameter. Since these coordinate curves are not usually straight lines, the
coordinates are called curvilinear.

2. Taking partial derivatives gives tangent vectors
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to the coordinate curves. The coordinates are said to be orthogonal if these three tangent
vectors are mutually perpendicular (orthogonal) at each point of space
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3. Unit basis vectors. One scales the tangent vectors to have length 1, to get a basis (or moving
frame) of vectors at each point. Define the scale factors hi by
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and define the unit vectors ûi by

ûi =
1

hi

∂r
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We usually order the basis vectors so that they form a right handed system: û1 × û2 = û3,
û2 × û3 = û1, and û3 × û1 = û2.

4. Cylindrical Coordinates. Cylindrical coordinates are a example of an orthogonal curvilinear
coordinate system.

r(r, θ, z) = 〈r cos θ, r sin θ, z〉

with tangent vectors, scale factors, and unit vectors given by

∂r
∂r

= 〈cos θ, sin θ, 0〉 h1 = 1 r̂ = 〈cos θ, sin θ, 0〉

∂r
∂θ

= 〈−r sin θ, r cos θ, 0〉 h2 = r θ̂ = 〈− sin θ, cos θ, 0〉

∂r
∂z

= 〈0, 0, 1〉 h3 = 1 ẑ = 〈0, 0, 1〉

You should verify that these are mutually orthogonal unit vectors.

5. Spherical Coordinates. Spherical coordinates are another example of an orthogonal curvi-
linear coordinate system.

r(ρ, φ, θ) = 〈ρ sinφ cos θ, ρ sin φ sin θ, ρ cosφ〉



with tangent vectors, scale factors, and unit vectors given by
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= 〈sinφ cos θ, sin φ sin θ, cosφ〉 h1 = 1 ρ̂ = 〈sinφ cos θ, sin φ sin θ, cosφ〉

∂r
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= 〈ρ cosφ cos θ, ρ cosφ sin θ,−ρ sinφ〉 h2 = ρ φ̂ = 〈cosφ cos θ, cosφ sin θ,− sin φ〉

∂r
∂θ

= 〈−ρ sinφ sin θ, ρ sinφ cos θ, 0〉 h3 = ρ sin φ θ̂ = 〈− sin θ, cos θ, 0〉

You should verify that these are mutually orthogonal unit vectors.

6. Gradient in Curvilinear Coordinates. Let f be a scalar field (function). Recall that the
components of a vector with respect to the usual basis î, ĵ, k̂ are simply the projections of
the vector onto the î, ĵ and k̂ directions. Likewise, we compute the ûi–components of ∇f by
projecting the vector ∇f onto ûi. This is
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The first equality comes from the definition of ∇f and ûi, and the second inequality is just the
chain rule.

Thus, we get the following formula for ∇f
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In cylindrical coordinates the gradient is
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In spherical coordinates the gradient is
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7. Gradient Expression for the Basis Vectors. Note that
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û3 =
1

hi
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The last equality holds because ∂ui

∂uj
is equal to 0 when j 6= i, and is equal to 1 when j = i.

Thus, we have another expression for the ûi in terms of gradients

û1 = h1∇u1 û2 = h2∇u2 û3 = h3∇u3 (3)

This should make intuitive sense to you. Recall that ∇u1 at a point P is normal to the level
surface u1 = C, a constant. The coordinate curves for u2 and for u3 through the point P by
definition will keep u1 fixed, and so they lie in the level surface u1 = C. Therefore the normal
vector ∇u1 at P is perpendicular to the (scaled) tangent vectors û2 and û3 at P . So ∇u1 is a
multiple of û1. Equation (2) tells us the precise multiple. Likewise for ∇u2 and ∇u3.



8. The Divergence in Curvilinear Coordinates. Let F be a vector field with coordinate
functions Fi with respect to the unit vectors ûi. That is

F = F1û1 + F2û2 + F3û3

where the Fi are functions of (u1, u2, u3).

We compute the divergence ∇ · F using properties of the differential operator ∇. First ∇
satisfies a sum rule, and so it suffices to determine each ∇ · (Fiûi) individually. Furthermore,
the product rule for ∇· gives

∇ · (Fiûi) = (∇Fi) · ûi + Fi(∇ · ûi) (4)

The first term on the right hand side of equation (4) is easy to compute now that we know an
expression (from equation (1)) for the gradient. It is just

(∇Fi) · ûi =
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The second term on the right hand side of equation (4) takes a little more thought. For
concreteness, we compute F1(∇ · û1). The other cases (i = 2, 3) are handled similarly.

F1(∇ · û1) = F1∇ · (û2 × û3)

= F1∇ · (h2∇u2 × h3∇u3)
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The first equality is because the ûi form a right handed system. The second equality holds
by equation (3). The third equality is just pulling scalars out of a cross product. The fourth
equality use the product rule for the operator ∇·. The fifth equality is because ∇ · (∇f ×∇g)
vanishes (see below), and uses equation (3) to convert the first term back to ûi vectors. The
second to last equality uses equation (1) to compute the first component of ∇(h2h3).

[Aside: We see that ∇ · (∇f ×∇g) vanishes because of a vector cross product identity and the
fact that ∇×∇ = 0. Specifically,

∇ · (∇f ×∇g) = ∇g · (∇×∇f) − ∇f · (∇×∇g) = 0]

So, in the case i = 1, equation (4) becomes
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We obtain similar expressions in the case i = 2, 3. Combining all three gives the following
expression for the divergence
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In cylindrical coordinates the divergence of F = F1r̂+ F2θ̂ + F3ẑ is
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In spherical coordinates the divergence of F = F1ρ̂+ F2φ̂+ F3θ̂ is
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9. The Laplacian in Curvilinear Coordinates. Combining the results from the two previous
sections, we get an expression for the Laplacian (∆ = ∇2).
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In cylindrical coordinates the Laplacian is
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In spherical coordinates the Laplacian is
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10. The Curl in Curvilinear Coordinates. Let F be a vector field with coordinate functions
Fi with respect to the unit vectors ûi. That is

F = F1û1 + F2û2 + F3û3

where the Fi are functions of (u1, u2, u3).

We compute the curl ∇×F using properties of the differential operator ∇×. First ∇× satisfies
a sum rule, and so it suffices to determine each ∇ × (Fiûi) individually. Furthermore, the
product rule for ∇× gives

∇× (Fiûi) = (∇Fi)× ûi + Fi(∇× ûi) (7)

For concreteness, we’ll work out the right side of equation (7) in the case i = 1. The cases
i = 2, 3 are similar.



Using equation (1) we can write out the first term on the right side of equation (7) as
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The second equality just uses the fact that the ûi form a right handed system.

We can use the gradient version of the ûi (from equation (3)) to write the second term on the
right side of equation (7) as
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Combining the results of the past two paragraphs we get that equation (7) becomes
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û2 −

(

1

h1h2

∂(h1F1)

∂u2

)

û3

There are similar expressions for the case i = 2, 3. We recognize sum of all these as the output
of a 3× 3–determinant, and so obtain the the following expression for the curl
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In cylindrical coordinates the Curl of F = F1r̂+ F2θ̂ + F3ẑ is
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In spherical coordinates the Curl of F = F1ρ̂+ F2φ̂+ F3θ̂ is
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