
MATH 2443–008 Calculus IV Spring 2014
Intuition about the Laplacian

We shall see that, roughly speaking, the Laplacian of f measures the difference between the value
of f at a point and the average values of f on small spherical neighborhoods of the point. We will
make the rough intuition more precise as we go. For convenience we shall work around the origin
0 = (0, 0, 0), but the result holds at any point.

1. Let

g(t) =

∫∫
S2

f(tr) dS

We see that g(t) measures the sum of f(tr) over the unit sphere S2 defined by x2 + y2 + z2 = 1
in R3.

Note the presence of t in the argument of f ; as r ranges over S2, the term tr ranges over the
sphere of radius t about 0. Thus, the integral is essentially (up to a t2 factor) summing the
values of f(r) over a sphere of radius t.

Setting t = 0 we obtain

g(0) =

∫∫
S2

f(0) dS = 4πf(0)

2. Taylor’s theorem gives

g(t) = g(0) + g′(0)t +
g′′(0)t2

2
+ O

(
t2
)

where the notation O(t2) is used to denote the fact that the remainder tends to 0 faster than

t2; that is,
O(t2)
t2
→ 0 as t→ 0.

We know g(0) from item 1 above. We need to determine g′(0) and g′′(0) next.

3. The derivative of g is obtained as follows

dg

dt
=

d

dt

∫∫
S2

f(tr) dS

=

∫∫
S2

∂f(tr)

∂t
dS

=

∫∫
S2

[
∂f

∂x
(tr)

∂(tx)

∂t
+
∂f

∂y
(tr)

∂(ty)

∂t
+
∂f

∂z
(tr)

∂(tz)

∂t

]
dS

=

∫∫
S2

(∇f)|(tr) · r dS

=

∫∫
S2

(∇f)|(tr) · n̂ dS

=

∫∫∫
B3

∇ · ((∇f)|(tr)) dV

=

∫∫∫
B3

t(∇2f)|(tr) dV

The second equality is just taking a derivative inside of an integral. The d
dt

becomes ∂
∂t

because
the expression f(tr) depends on r = (x, y, z) in addition to t, while outside the integral the



x, y, z variables have been “integrated” away and only t remains. Equality three is a result of
the chain rule. Equality five is because, on the unit sphere, the radius vector r is identical to
the unit outward pointing normal n. Equality six is a result of the Divergence Theorem; the
region B3 is the solid unit ball x2 + y2 + z2 ≤ 1. The extra t term in equality seven is a result
of the chain rule (when computing the divergence) again.

The t term inside the integral means that g′(0) = 0.

4. The second derivative of g is given by

g′′(t) =
d

dt

∫∫∫
B3

t(∇2f)|(tr) dV

=

∫∫∫
B3

∂

∂t

(
t(∇2f)|(tr)

)
dV

=

∫∫∫
B3

[
(∇2f)|(tr) + t

∂

∂t

(
(∇2f)|(tr)

)]
dV

Equality three is just the product rule for derivatives. The key fact is that the second term has
a t factor, and will vanish at t = 0.

We obtain

g′′(0) =

∫∫∫
B3

[
(∇2f)|(0) + 0

]
dV =

4π

3
(∇2f)|(0)

5. Combining all these together into the Taylor expression in item 2 above gives∫∫
S2

f(tr) dS = 4πf(0) + 0 +
4π

3
(∇2f)|(0)

t2

2
+ O

(
t2
)

Solving for (∇2f)|(0) gives

(∇2f)|(0) =

[∫∫
S2

f(tr) dS − 4πf(0)

]
6

4πt2
+
O(t2)

t2

Taking limits as t→ 0 gives

(∇2f)|(0) = lim
t→0

6
[

1
4π

∫∫
S2 f(tr) dS − f(0)

]
t2

(1)

So the value of the Laplacian of f at a point measures the difference between the average
value of f on a sphere of radius t about the point and the value of f at the point as t → 0.
This difference tends to 0 like t2 and so the Laplacian measures the limit of the ratio of this
and t2. In the precise computations we found that there is a factor of 6 in this expression too.

Don’t worry about the precise constants; just keep the intuition in your head. The Laplacian
is a type of second order derivative (hence the division by t2 and the limit as t → 0), and the
numerator is the difference between the average value of f on a sphere of radius t about the
point and the value of f at the point.

6. Remark 1. The expression for the average value of f on the sphere of radius t used in
equation (1) above may need some extra thought. Let S2 denote the unit sphere, and let S2

t



denote the sphere of radius t. We said that
∫∫
S2 f(tr) dS was the same as the sum of f over the

sphere S2
t up to a factor of t2. You should check that indeed

t2
∫∫

S2

f(tr) dS =

∫∫
S2
t

f(r) dS

Now, the average value of f on S2
t is∫∫

S2
t
f(r) dS

4πt2
=

t2
∫∫
S2 f(tr) dS

4πt2
=

∫∫
S2 f(tr) dS

4π

This last term is what we used for the average of f on S2
t in equation (1).

7. Remark 2. The expression (1) for the Laplacian can be derived in any dimension (not just
3–d). In general, one obtains

(∇2f)|(0) = lim
t→0

2n
[

1
Vn−1(Sn−1)

∫
Sn−1 f(tr) dV − f(0)

]
t2

Here the integral is over the unit (n − 1)–dimensional sphere Sn−1 (defined by the equation
x21 + · · ·+ x2n = 1) in Rn, and Vn−1(S

n−1) denotes the (n− 1)–dimensional volume of Sn−1.

Notation. It is cleaner to use the single integral notation
∫
Em to denote an m-dimensional

integral, rather than something unwieldy such as
∫
· · ·
∫
Em .

8. Remark 3. Here is an instance of the Laplacian in “real life.” The Heat Equation is given by

∂u

∂t
= α∇2u

Here u = u(x, y, z, t) denotes the temperature at the point (x, y, z) of some object at time t.
The constant α > 0 (called the thermal diffusivity of the material) depends on the physical
properties of the object in question.

For example, suppose that at a given time t, the average temperatures of points on small
spheres around (x, y, z) are greater than the temperature at (x, y, z). Then from the intuitive
interpretation of ∇2 above we have that ∇2u > 0 at the point. Furthermore, we expect that
∂u
∂t

> 0 at the point because the warmer neighbors are “heating the point up.” Plugging a
positive term ∇2u into the heat equation we obtain ∂u

∂t
> 0, which agrees with our intuition.

Note that for a “steady state” solution (i.e., solution does not change in time) to the heat equa-
tion, we have ∂u

∂t
= 0 and so ∇2u = 0 everywhere. This means that in a steady state situation,

the temperature at any point is equal to the average of the temperatures of neighboring points
(on small spheres about the point). This “average value property” is a good intuition to have
about steady state heat distributions.

9. Remark 4. The Laplacian in one dimension is just the second derivative, ∇2f = d2f
dx2

= f ′′(x).
It is a good exercise to check that indeed f ′′(x) = limh→0 2[(f(x+ h) + f(x− h))/2− f(x)]/h2.
Also, note that the only functions which satisfy f ′′(x) = 0 are the straight line functions
f(x) = ax+ b which clearly satisfy the average value property: (f(x+h) + f(x−h))/2 = f(x).



10. Remark 5. The derivation of the Heat Equation above from physical principles is a good
example of how the Divergence Theorem is used in setting up mathematical models in your
physics or engineering courses.

The basic strategy is usually to formulate an integral version of the physical principle, and
then to convert to a differential formulation. The integral formulation may involve double and
triple integrals, and we use the Divergence Theorem to convert all to triple integrals, and then
compare integrands.

Using the notation above, we let u(x, y, z, t) denote the temperature at the point (x, y, z) of a
body at time t.

• Since heat “flows” from points with higher temperatures to points with lower temperatures
whereas ∇u points in the direction of increasing temperature, it makes sense to define the
heat flux to be proportional to −∇u. So the heat flux is defined to be

−λ∇u

where we suppose for simplicity that λ is a constant throughout the body. This quantity
λ is called the thermal conductivity of the material.

• The net heat flux (heat energy flow in unit time) out of a 3-dimensional region E of the
body is given by ∫∫

∂E

−λ∇u · dS

where ∂E denotes the (closed surface) boundary of the region E. This is known as Fourier’s
Law.

By the Divergence Theorem, this can be rewritten as a volume integral∫∫∫
E

∇ · (−λ∇u) dV =

∫∫∫
E

−λ∇2u dV

• On the other hand, the net heat energy contained in the region E of the body can be
written as a volume integral ∫∫∫

E

ρσu dV

where ρ is the mass density, and σ is the specific heat capacity of the material in the body.

• The net heat flux across ∂E is the net flow of heat energy out of the region E in unit
time, which is equal to the negative of the rate of change of heat energy in the region E
(the underlying physical principle here is conservation of energy)∫∫∫

E

−λ∇2u dV = − ∂

∂t

(∫∫∫
E

ρσu dV

)
= −

∫∫∫
E

∂

∂t
(ρσu) dV

• This integral equation holds true for any region E in the body. In particular, it holds for
regions Er which are balls of radius r → 0 about any point P . Therefore, we can compare
integrands to obtain

ρσ
∂u

∂t
= λ∇2u

at all points P of the body.

This is the heat equation in Remark 3 above, with α = λ
ρσ

.


