Path Integrals: Let \mathbf{F} be a vector field defined on an open region containing a curve C given by $\mathbf{r}(t)$, $a \leq t \leq b$. In 2-dimensions we have $\mathbf{F}=\langle P, Q\rangle$ and $\mathbf{r}(t)=\langle x(t), y(t)\rangle$. In 3-dimensions we have $\mathbf{F}=\langle P, Q, R\rangle$ and $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$.
Here is the definition of path integral of \mathbf{F} along C.

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot \hat{\mathbf{T}} d s & =\int_{C} \mathbf{F} \cdot d \mathbf{r} \\
& = \begin{cases}\int_{C} P d x+Q d y & \text { (in 2-d) } \\
\int_{C} P d x+Q d y+R d z & \text { (in 3-d) }\end{cases} \\
& = \begin{cases}\int_{a}^{b}\left[P(x(t), y(t)) \frac{d x}{d t}+Q(x(t), y(t)) \frac{d y}{d t}\right] d t \\
\int_{a}^{b}\left[P(x(t), y(t), z(t)) \frac{d x}{d t}+Q(x(t), y(t), z(t)) \frac{d y}{d t}+R(x(t), y(t), z(t)) \frac{d z}{d t}\right] d t & \text { (in 3-d) }\end{cases}
\end{aligned}
$$

Computing Path Integrals: There are three steps to computing the path integral of a vector field over a path C. The hard steps are actually from Calculus III and Calculus I/II.

- Find a parametric description of C [Calc III].
- Use the last part of the definition/equation above.
- Evaluate the resulting 1-variable integral [Calc I/II].

Fundamental theorem: Let f be a function of 2 or 3 variables, and let $C: \mathbf{r}(t), a \leq t \leq b$ be a path which lies in the domain of f. Then we have

$$
\int_{C} \nabla f \cdot d \mathbf{r}=f(\mathbf{r}(b))-f(\mathbf{r}(a))
$$

Green's Theorem: Let C be a piecewise-smooth, positively oriented, simple closed curve in the plane which bounds a region D. If P and Q have continuous partial derivatives on an open region which contains D then

$$
\int_{C} P d x+Q d y=\iint_{D}\left[Q_{x}-P_{y}\right] d A
$$

Application of Green to areas: Let C and D be as in Green's theorem above. Then the area of the region D can be computed as follows

$$
\operatorname{Area}(D)=\iint_{D} d A=\left\{\begin{array}{l}
\int_{C} x d y \quad \text { or } \\
-\int_{C} y d x \quad \text { or } \\
\frac{1}{2} \int_{C} x d y-y d x
\end{array}\right.
$$

