
Miscellaneous Expressions and Results

• Second Derivative Test. Test depends on sign of D and of f
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• Polar Coordinates. x = r cos(✓); y = r sin(✓)

dA = rdrd✓

• Cylindrical Coordinates. x = r cos(✓); y = r sin(✓); z = z

dV = rdrd✓dz

• Spherical Coordinates. x = ⇢ sin(�) cos(✓); y = ⇢ sin(�) sin(✓); z = ⇢ cos(�)
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• General Coordinates in 2-d.
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• General Coordinates in 3-d.
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• Surface Area. Area element of the portion of the graph z = f(x, y) which lies over the rectangle

dxdy

dA =

q
1 + f

2
x

+ f

2
y

dxdy

• Fundamental Theorem: Z

C

(rf) · dr = f(r(b))� f(r(a))

where the curve C is the curve given by r(t) where a  t  b.

• Green’s Theorem: F = hP,Qi is a vector field.
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curl(F) · ˆk dA

where C is the positively oriented boundary of the 2-dimensional region D.



• Stokes’ Theorem: F = hP,Q,Ri is a vector field.
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curl(F) · dS

where @S is the positively oriented boundary of the oriented surface S in 3-dimensional space.

• Divergence Theorem: F = hP,Q,Ri is a vector field.
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where @E is the positively oriented boundary of the 3-dimensional region E.

• Surface area elements:
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where the surface has parametric description r(u, v) = hx(u, v), y(u, v), z(u, v)i.

• Vector di↵erential operator:
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can operate on functions (grad), and on vector fields either like a dot product (div) or like a cross

product (curl).


