- Second Derivative Test. Test depends on sign of D and of $f_{x x}$.

$$
D=\left(f_{x x}\right)\left(f_{y y}\right)-\left(f_{x y}\right)^{2}
$$

- Polar Coordinates. $x=r \cos (\theta) ; y=r \sin (\theta)$

$$
d A=r d r d \theta
$$

- Cylindrical Coordinates. $x=r \cos (\theta) ; y=r \sin (\theta) ; z=z$

$$
d V=r d r d \theta d z
$$

- Spherical Coordinates. $x=\rho \sin (\phi) \cos (\theta) ; y=\rho \sin (\phi) \sin (\theta) ; z=\rho \cos (\phi)$

$$
d V=\rho^{2} \sin (\phi) d \rho d \phi d \theta
$$

- General Coordinates in 2-d.

$$
d A=\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v
$$

where

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right|
$$

- General Coordinates in 3-d.

$$
d V=\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| d u d v d w
$$

where

$$
\frac{\partial(x, y, z)}{\partial(u, v, w)}=\left|\begin{array}{lll}
x_{u} & x_{v} & x_{w} \\
y_{u} & y_{v} & y_{w} \\
z_{u} & z_{v} & z_{w}
\end{array}\right|
$$

- Surface Area. Area element of the portion of the graph $z=f(x, y)$ which lies over the rectangle $d x d y$

$$
d A=\sqrt{1+f_{x}^{2}+f_{y}^{2}} d x d y
$$

- Fundamental Theorem:

$$
\int_{C}(\nabla f) \cdot d \mathbf{r}=f(\mathbf{r}(b))-f(\mathbf{r}(a))
$$

where the curve C is the curve given by $\mathbf{r}(t)$ where $a \leq t \leq b$.

- Green's Theorem: $\mathbf{F}=\langle P, Q\rangle$ is a vector field.

$$
\begin{gathered}
\oint_{C} P d x+Q d y=\iint_{D}\left(Q_{x}-P_{y}\right) d A \\
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{D} \operatorname{curl}(\mathbf{F}) \cdot \hat{\mathbf{k}} d A
\end{gathered}
$$

where C is the positively oriented boundary of the 2-dimensional region D.

- Stokes' Theorem: $\mathbf{F}=\langle P, Q, R\rangle$ is a vector field.

$$
\oint_{\partial S} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d \mathbf{S}
$$

where ∂S is the positively oriented boundary of the oriented surface S in 3-dimensional space.

- Divergence Theorem: $\mathbf{F}=\langle P, Q, R\rangle$ is a vector field.

$$
\oiiint_{\partial E} \mathbf{F} \cdot d \mathbf{S}=\iiint_{E} \operatorname{div}(\mathbf{F}) d V
$$

where ∂E is the positively oriented boundary of the 3 -dimensional region E.

- Surface area elements:

$$
d \mathbf{S}=\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} d u d v
$$

and

$$
d S=\left|\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right| d u d v
$$

where the surface has parametric description $\mathbf{r}(u, v)=\langle x(u, v), y(u, v), z(u, v)\rangle$.

- Vector differential operator:

$$
\nabla=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle
$$

can operate on functions (grad), and on vector fields either like a dot product (div) or like a cross product (curl).

